In object- or pixel-based modelling, facies connectivity is tied to facies proportion as an inevitable consequence of the modelling process. However, natural geological systems (and rule-based models) have a wider range of connectivity behaviour and therefore are ill-served by simple modelling methods in which connectivity is an unconstrained output property rather than a user-defined input property. The compression-based modelling method decouples facies proportions from facies connectivity in the modelling process and allows models to be generated in which both are defined independently. The two-step method exploits the link between the connectivity and net:gross ratio of the conventional (pixel- or object-based) method applied. In Step 1 a model with the correct connectivity but incorrect facies proportions is generated. Step 2 applies a geometrical transform which scales the model to the correct facies proportions while maintaining the connectivity of the original model. The method is described and illustrated using examples representative of a poorly connected deep-water depositional system and a well-connected fluid-driven vein system.