Typing of methicillin-resistant Staphylococcus aureus (MRSA) remains necessary in order to assess whether transmission of MRSA occurred and to what extent infection prevention measures need to be taken. Raman spectroscopy (SpectraCellRA [SCRA]; RiverD International, Rotterdam, The Netherlands) is a recently developed tool for bacterial typing. In this study, the performance (typeability, discriminatory power, reproducibility, workflow, and costs) of the SCRA system was evaluated for typing of MRSA strains isolated from patients and patients' household members who were infected with or colonized by MRSA. We analyzed a well-documented collection of 113 MRSA strains collected from 54 households. The epidemiological relationship between the MRSA strains within one household was used as the gold standard. Pulsed-field gel electrophoresis (PFGE) was used for discrepancy analysis. The results of SCRA analysis on the strain level corresponded with epidemiological data for 108 of 113 strains, a concordance of 95.6%. When analyzed at the household level, the results of SCRA were correct for 49 out of 54 households, a concordance of 90.7%. Concordance on the strain level with epidemiological data for PFGE was 93.6% (103/110 isolates typed). Concordance on the household level with epidemiological data for PFGE was 93.5% (49/53 households analyzed). With PFGE regarded as the reference standard, the conclusions reached with Raman spectroscopy were identical to those reached with PFGE in 100 of 105 cases (95.2%). The reproducibility of SCRA was found to be 100%. We conclude that the SpectraCellRA system is a fast, easy-to-use, and highly reproducible typing platform for outbreak analysis that can compete with the currently used typing techniques.