The paper presents a framework for the integration of the system's design variables, state variables, control strategies, and contextual variables into a design optimization problem to assist early-stage design decisions. The framework is based on a global optimizer incorporating Dynamic Programming, and its applicability is demonstrated by the conceptual design of an electrical hauler. Pareto front of optimal design solutions, in terms of time and cost, together with optimal velocity profiles and battery state-of-charge is visualized for the given mining scenario.