Abstract. In formerly glaciated permafrost regions, extensive areas are still underlain by a considerable amount of glacier ice buried by glacigenic sediments. Although the extent and volume of undisturbed relict glacier ice are unknown, these ice bodies are predicted to melt with climate warming but their impact on landscape evolution remains poorly studied. The spatial distribution of buried glacier ice can play a significant role in reshaping periglacial landscapes, in particular thermokarst aquatic systems. This study focuses on lake initiation and development in response to the melting of buried glacier ice on Bylot Island, Nunavut. We studied a lake-rich area using lake-sediment cores, detailed bathymetric data, remotely sensed data and observations of buried glacier ice exposures. Our results suggest that initiation of deeper thermokarst lakes was triggered by the melting of buried glacier ice. They have subsequently enlarged through thermal and mechanical shoreline erosion, as well as vertically through thaw consolidation and subsidence, and they later coalesced with neighbouring water bodies to form larger lakes. Thus, these lakes now evolve as “classic” thermokarst lakes that expand in area and volume as a result of the melting of intrasedimental ground ice in the surrounding material and the underlying glaciofluvial and till material. It is expected that the deepening of thaw bulbs (taliks) and the enlargement of Arctic lakes in response to global warming will reach undisturbed buried glacier ice, if any, which in turn will substantially alter lake bathymetry, geochemistry and greenhouse gas emissions from Arctic lowlands.