The aerodynamic noise has been the dominant factor of noise issues in high-speed train as the traveling speed increases. The inter-coach windshield region is considered as one of the main aerodynamic noise sources; however, the corresponding characteristics have not been well investigated. In this paper, a hybrid method is adopted to study the aerodynamic noise around the windshield region. The effectiveness of simulation methods is validated by a simple case of cavity noise. After that, the Reynolds-averaged Navier-Stokes simulation is used to obtain the characteristics of flow field around the windshield region, which determine the aerodynamic noise. Then the nonlinear acoustic solver approach is employed to acquire the near-field noise, while the Ffowcs-Williams/Hawking equation is solved for farfield acoustic propagation. The results indicate that the windshield region is approximately an open cavity filled with severe disturbance flow. According to the analysis of sound pressure distribution in the near-acoustic field, both sides of the windshield region appear symmetrical two-lobe shape with different directivities. The results of frequency spectrum analysis indicate that the aerodynamic noise inside inter-coach space is a typical broadband one from 100 Hz to 5k Hz, and most acoustic power is restricted in the low-medium frequency range (below 500 Hz). In addition, the acoustic power in the low frequency range (below 100 Hz) is closely related to the cavity resonance with the resonance peak frequency of 42 Hz. The overall sound pressure level at different speeds shows that the acoustic power grows approximately 5th power of the train speed. Two forms of outside-windshields are designed to reduce the noise around the windshield region, and the results show the full-windshield form is better in noise reduction, which apparently eliminates interior cavity noise of inter-coach space and lessens the overall sound pressure level on the sides of near-field by about 13 dB.