Open-channel confluence flows are common in natural river systems as well as in environmental and hydraulic engineering, such as in river engineering. Often, these flows are three-dimensional and complex, while numerical studies fully describing confluence flow are still few. This paper presents the results of investigation of confluence flow using a three-dimensional numerical model with the linear and nonlinear k-ε models. To treat the dynamic boundary condition at the free surface, non-hydrostatic pressure is included in the present model. The model is validated using the experimental data available. Adequacy of the present model with two turbulence models above is indicated based on the result analysis. The nonlinear model is indicated as the more advantageous one than the linear one.