Huddling and torpor are widely used for minimizing heat loss by mammals. Despite the questionable energetic benefits from social heterothermy of mixed groups of warm normothermic and cold torpid individuals, the heterothermic Australian sugar glider (Petaurus breviceps) rests in such groups during the cold season. To unravel why they might do so, we examined torpor expression of two sugar glider groups of four individuals each in outside enclosures during winter. We observed 79 torpor bouts during 50 days of observation and found that torpor bouts were longer and deeper when all individuals of a group entered torpor together, and therefore infer that they would have saved more energy in comparison to short and shallow solitary torpor bouts. However, all gliders of either group only expressed torpor uniformly in response to food restriction, whereas on most occasions at least one individual per group remained normothermic. Nevertheless, the presence of warm gliders in mixed groups also appears to be of energetic advantage for torpid individuals, because nest box temperature was negatively correlated with the number of torpid gliders, and normothermic individuals kept the nest temperature at a value closer to the threshold for thermoregulatory heat production during torpor. Our study suggests that mixed groups of torpid and normothermic individuals are observed when environmental conditions are adverse but food is available, leading to intermediate energy savings from torpor. However, under especially challenging conditions and when animals are starving, energy savings are maximized by uniform and pronounced expression of torpor.