In living organisms, proteins are considered as the executants of biological functions. Owing to its pivotal role played in protein folding patterns, comprehension of protein structure is a challenging issue. Moreover, owing to numerous protein sequence exploration in protein data banks and complication of protein structures, experimental methods are found to be inadequate for protein structural class prediction. Hence, it is very much advantageous to design a reliable computational method to predict protein structural classes from protein sequences. In the recent few years there has been an elevated interest in using deep learning to assist protein structure prediction as protein structure prediction models can be utilized to screen a large number of novel sequences. In this regard, we propose a model employing Energy Profile for atom pairs in conjunction with the Legion-Class Bayes function called Energy Profile Legion-Class Bayes Protein Structure Identification model. Followed by this, we use a Thompson Optimized convolutional neural network to extract features between amino acids and then the Thompson Optimized SoftMax function is employed to extract associations between protein sequences for predicting secondary protein structure. The proposed Energy Profile Bayes and Thompson Optimized Convolutional Neural Network (EPB-OCNN) method tested distinct unique protein data and was compared to the state-of-the-art methods, the Template-Based Modeling, Protein Design using Deep Graph Neural Networks, a deep learning-based S-glutathionylation sites prediction tool called a Computational Framework, the Deep Learning and a distance-based protein structure prediction using deep learning. The results obtained when applied with the Biopython tool with respect to protein structure prediction time, protein structure prediction accuracy, specificity, recall, F-measure, and precision, respectively, are measured. The proposed EPB-OCNN method outperformed the state-of-the-art methods, thereby corroborating the objective.