2024
DOI: 10.3390/act13070251
|View full text |Cite
|
Sign up to set email alerts
|

Traffic Signal Control Optimization Based on Neural Network in the Framework of Model Predictive Control

Dapeng Tang,
Yuzhou Duan

Abstract: To improve the effectiveness of model predictive control (MPC) in dynamic traffic signal control strategies, it has been combined with graph convolutional networks (GCNs) and deep reinforcement learning (DRL) technologies. In this study, a neural-network-based traffic signal control optimization method under the MPC framework is proposed. A dynamic correlation matrix is introduced in the predictive model to adapt to the dynamic changes in correlations between nodes over time. The signal control optimization st… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 21 publications
0
0
0
Order By: Relevance