The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
SynopsisIn a recent short communication [Read, D. J. et al., Science 333, 1871(2011], we showed that a computational scheme can describe the nonlinear flow properties for a series of industrial lowdensity polyethylene (LDPE) resins starting from the molecular architecture. The molecular architecture itself is determined by fitting parameters of a reaction kinetics model to average structural information obtained from gel-permeation chromatography and light scattering. Flow responses of these molecules in transient uniaxial extension and shear are calculated by mapping the stretch and orientation dynamics of the segments within the molecules to effective pom-pom modes. In this paper, we provide the details of the computational scheme and present additional results on a LDPE and a high-density polyethylene resin to illustrate the dependence of segmental maximum stretch variables on the flow rate. V C 2014 The Society of Rheology.