Wireless sensor network (WSN) plays a crucial role in the Internet of Things (IoT), which assist to produce seamless information that have a great impact on the network lifetime. Despite the substantial application of the WSN numerous challenges like energy, load balancing, security, and storage exist. Energy efficacy is regarded as an integral part of the design of WSN; this can be achieved by clustering and multi-hop routing technique using metaheuristic optimization algorithm. This paper concentrates on design of metaheuristics cluster-based routing technique for energy-efficient WSN (MHCRT-EEWSN). The presented MHCRT-EEWSN technique mainly concentrates on the improvements of energy efficiency and lifespan of the WSN via clustering and routing process. For effectual clustering process, the MHCRT-EEWSN model utilizes whale moth flame optimization (WMFO) technique can be utilized by the use of fitness function involving intra-cluster distance, inter-cluster distance, energy, and balancing factor. Besides, the MHCRT-EEWSN model employs improved African buffalo optimization (IABO) based routing technique. To select optimal routes in WSN, the IABO algorithm designs a fitness function comprising multiple parameters like residual energy and distance factor. The experimental validation of the MHCRT-EEWSN model can be tested by making use of a series of simulations. A wide-ranging comparative study shows the promising performances of the MHCRT-EEWSN model than other recent methods.