2019
DOI: 10.1016/j.ffa.2018.10.008
|View full text |Cite
|
Sign up to set email alerts
|

Two types of permutation polynomials with special forms

Abstract: Let q be a power of a prime and F q be a finite field with q elements. In this paper, we propose four families of infinite classes of permutation trinomials having the form cx − x s + x qs over F q 2 , and investigate the relationship between this type of permutation polynomials with that of the form (x q − x + δ) s + cx. Based on this relation, many classes of permutation trinomials having the form (x q − x + δ) s + cx without restriction on δ over F q 2 are derived from known permutation trinomials having th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
12
0
6

Year Published

2020
2020
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 34 publications
(18 citation statements)
references
References 43 publications
0
12
0
6
Order By: Relevance
“…Recently, some classes of PPs are found; see for example [10,13,23,24,26] for PPs of the form x r h(x q−1 ) of F q 2 , [16,27] for PPs of the form (x q − x + c) s + L(x) of F q 2 , [9,25,31] for PPs of the form (ax q + bx + c) r φ((ax q + bx + c) s ) + ux q + vx of F q 2 , and [1,4,7] for PPs studied by using the Hasse-Weil bound and Hermite's criterion.…”
Section: Introductionmentioning
confidence: 99%
“…Recently, some classes of PPs are found; see for example [10,13,23,24,26] for PPs of the form x r h(x q−1 ) of F q 2 , [16,27] for PPs of the form (x q − x + c) s + L(x) of F q 2 , [9,25,31] for PPs of the form (ax q + bx + c) r φ((ax q + bx + c) s ) + ux q + vx of F q 2 , and [1,4,7] for PPs studied by using the Hasse-Weil bound and Hermite's criterion.…”
Section: Introductionmentioning
confidence: 99%
“…Começaremos apresentando definições e resultados básicos, e na primeira seção falaremos sobre o grupo dos polinômios de permutação. Na segunda seção, destacamos nossa generalização (Proposição 3.22) de um resultado apresentado em [21]. Através dela, apresentaremos novos exemplos de polinômios de permutação (Teorema 3.27).…”
Section: Polinômios De Permutaçãounclassified
“…Talvez inspirados por esses teoremas, diversos autores buscaram equivalências para bijeções entre diferentes classes de polinômios. Nessa seção, destacamos nossa generalização da Proposição 3 de [21]. Sua demonstraçãoé análogaà original e baseia-se apenas no Teorema 3.20, mas merece ser apresentada.…”
Section: Pps Gerados a Partir De Outros Ppsunclassified
See 2 more Smart Citations