Unsupervised feature extraction using deep learning empowers discovery of genetic determinants of the electrocardiogram
Ewa Sieliwonczyk,
Arunashis Sau,
Konstantinos Patlatzoglou
et al.
Abstract:Advanced data-driven methods can outperform conventional features in electrocardiogram (ECG) analysis, but often lack interpretability. The variational autoencoder (VAE), a form of unsupervised machine learning, can address this shortcoming by extracting comprehensive and interpretable new ECG features. Our novel VAE model, trained on a dataset comprising over one million secondary care median beat ECGs, and validated using the UK Biobank, reveals 20 independent features that capture ECG information content wi… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.