Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The gestation period in captive Yangtze finless porpoise (YFP) is a well-coordinated and dynamic process that involves both systemic and local alterations. The gut microbiota and its connection to fecal metabolites are crucial in supporting fetal development and ensuring maternal health during reproductive stages. This study evaluates changes in the gut microbiota and their correlation with fecal metabolites in captive YFPs during different reproductive stages. The results reveal that microbial community structure changed significantly during reproductive stages, while gut microbial diversity remained stable. The genus unclassified Peptostrptococcaceae, Corynebacterium, and norank KD4–96 were significantly greater in non-pregnancy (NP), Terrisporobacter was significantly greater in lactating (LL), and Clostridium was significantly higher in early-pregnancy (EP) compared to the other groups. The host fecal metabolome exhibited significant alterations during the reproductive stages. Indoxyl sulfate, octadecatrienoic acid, and methionyl-methionine were significantly higher in the NP; galactosylglycerol, chondroitin 6-sulfate, and lumichrome were significantly higher in the EP and mid-pregnancy (MP); and valylleucine and butyryl-l-carnitine were significantly higher in the LL. The altered metabolites were mostly concentrated in pathways associated with arachidonic acid metabolism (significantly altered in NP), leucine, valine, and isoleucine biosynthesis (significantly altered in EP and MP), and glycerophospholipid metabolism (significantly altered in LL compared to others stages). Additionally, we found a strong link between variations in the host metabolism and alterations in the fecal bacteria of captive YFP. In conclusion, this study provides detailed insights into host metabolic and fecal bacterial changes in captive YFP during reproduction stages, providing important knowledge for improving the reproductive management in the captive YFP.
The gestation period in captive Yangtze finless porpoise (YFP) is a well-coordinated and dynamic process that involves both systemic and local alterations. The gut microbiota and its connection to fecal metabolites are crucial in supporting fetal development and ensuring maternal health during reproductive stages. This study evaluates changes in the gut microbiota and their correlation with fecal metabolites in captive YFPs during different reproductive stages. The results reveal that microbial community structure changed significantly during reproductive stages, while gut microbial diversity remained stable. The genus unclassified Peptostrptococcaceae, Corynebacterium, and norank KD4–96 were significantly greater in non-pregnancy (NP), Terrisporobacter was significantly greater in lactating (LL), and Clostridium was significantly higher in early-pregnancy (EP) compared to the other groups. The host fecal metabolome exhibited significant alterations during the reproductive stages. Indoxyl sulfate, octadecatrienoic acid, and methionyl-methionine were significantly higher in the NP; galactosylglycerol, chondroitin 6-sulfate, and lumichrome were significantly higher in the EP and mid-pregnancy (MP); and valylleucine and butyryl-l-carnitine were significantly higher in the LL. The altered metabolites were mostly concentrated in pathways associated with arachidonic acid metabolism (significantly altered in NP), leucine, valine, and isoleucine biosynthesis (significantly altered in EP and MP), and glycerophospholipid metabolism (significantly altered in LL compared to others stages). Additionally, we found a strong link between variations in the host metabolism and alterations in the fecal bacteria of captive YFP. In conclusion, this study provides detailed insights into host metabolic and fecal bacterial changes in captive YFP during reproduction stages, providing important knowledge for improving the reproductive management in the captive YFP.
Milk is one of the most common sources of nutrients in humans, however, the composition and healthy value of the milk derived from different animals are very different. Here, we systemically compared the protein and lipid profiles and evaluated the anti-inflammation and antioxidant effect of buffalo and Holstein-derived milk on Caco-2 cells. Results showed that 906 proteins and 1899 lipids were identified in the buffalo milk and Holstein milk samples including 161 significantly different proteins (DEPs) and 49 significantly different lipids. The DEPs were mainly enriched in defense response-related terms, while the differential lipids were mainly included in fat digestion and absorption and cholesterol metabolism pathways. In addition, the Caco-2 cells co-cultured with buffalo and Holstein milk components showed significant benefits in being resistant to LPS-induced inflammation stress and H2O2-induced ROS stress. The qRT-PCR and ELISA results showed that the expression of TNF-α, IL-1β, and IL-6 was significantly lower (p < 0.05) in the cells co-cultured with milk components. Further analysis showed that, after H2O2 treatment, the expression of keap1 and Nrf-2 in the Caco-2 cells co-cultured with milk components was significantly lower (p < 0.05). In addition, being co-cultured with milk components significantly decreased the SOD, MDA, CAT, and GSH-Px content (p < 0.05) in the Caco-2 cells induced by H2O2. This study provides a novel insight into the differences in proteins and lipids between buffalo milk and Holstein milk, and a reference understanding of the anti-inflammation and antioxidant effect of the consumption of milk on the intestines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.