2015
DOI: 10.5194/isprsarchives-xl-3-w2-73-2015
|View full text |Cite
|
Sign up to set email alerts
|

Use of Aerial Images for Regular Updates of Buildings in the Fundamental Base of Geographic Data of the Czech Republic

Abstract: ABSTRACT:Digital aerial images (DAI) include position, elevation and also spectral information (visible bands and near-infrared band) about the captured area. The aim of this paper is to present the possibilities of automatic analysis of DAI for updating of the Fundamental Base of Geographic Data of the Czech Republic with a focus on buildings. Regular updates of buildings (automatic detection of new and demolished buildings) are based on the analysis of coloured point clouds created by an automatic image matc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
1

Year Published

2015
2015
2021
2021

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 14 publications
0
3
0
1
Order By: Relevance
“…The method presented in this paper is an improved version of that presented in (Hron and Halounova, 2015). The previous version of this method distinguished only between new and demolished buildings.…”
Section: Hybrid Change Detectionmentioning
confidence: 99%
“…The method presented in this paper is an improved version of that presented in (Hron and Halounova, 2015). The previous version of this method distinguished only between new and demolished buildings.…”
Section: Hybrid Change Detectionmentioning
confidence: 99%
“…Since this colour channel is much more important than the blue channel, aerial images were prepared in false colours, created with the combination of near-infrared, red and green channels (Hron and Halounova, 2015). Noted, that in case of lack of NIR channel, machine learning techniques could be used to detect vegetation.…”
Section: (B) (A) (C) (D)mentioning
confidence: 99%
“…Also, alternative approaches combining the advantages of both LIDAR and multispectral images have been applied (Liao and Huang, 2012). Hron and Halounova (2015) focused on point clouds that derived from digital aerial images using derived layers that contained additional information about the road and railway networks, shadow and vegetation/NDVI masks, etc.…”
Section: Introductionmentioning
confidence: 99%
“…Παρά την εξαγωγή ιδιαίτερα ικανοποιητικών αποτελεσμάτων, η συνδυαστική χρήση ετερογενών δεδομένων υστερεί λόγω: 1) του πρόσθετου οικονομικού κόστους συλλογής τους, 2) του πρόσθετου υπολογιστικού κόστους επεξεργασίας τους, και 3) των πιθανών συστηματικών σφαλμάτων κατά τον συνδυασμό τους. Για τον λόγο αυτό, οι σύγχρονες τάσεις τείνουν προς την ανάπτυξη μεθοδολογιών που έχουν τη δυνατότητα αξιοποίησης δεδομένων από ένα δέκτη, όπως για παράδειγμα η αξιοποίηση των διαθέσιμων εικόνων και των αντίστοιχων παραγόμενων προϊόντων τους (νέφη σημείων από DIM) [191][192][193][194] (κεφάλαια 4 και 5). Κάποιες δημοφιλείς αρχιτεκτονικές CNNs είναι οι: AlexNet [265], VGGNet [266], GoogleNet [267], SqueezeNet [268] και Ensemble Convolutional Neural Networks [264] (Εικόνα 2.15).…”
Section: μεθοδολογική προσέγγιση και πρωτότυπα στοιχεία της διατριβήςunclassified