Atopic dermatitis (AD) is a common inflammatory skin condition that has traditionally been considered a paradigmatic type 2 immunity (T2)-driven disease. Interleukin (IL)-4 and IL-13 are both pivotal cytokines involved in the generation of allergic diseases. Currently, besides dupilumab, which blocks the binding of both cytokines to their receptors, a number of new pharmacologic entities have been designed to target both T2 cytokines and/or their receptors and/or receptor-associated signal transduction machinery such as Janus kinases. Recently, IL-13 has been suggested to be the key T2 cytokine driving inflammation in the periphery, while IL-4 may merely have a central effect. There is increasing evidence that this concept holds true for the inflammatory reaction underlying AD, where IL-13 is overexpressed locally and has a significant impact on skin biology, including the recruitment of inflammatory cells, the alteration of the skin microbiome, and the decrease in the epidermal barrier function. This review provides an update on the role of IL-13 in AD and discusses the different strategies aimed at interfering with its biologic activity as well as their potential in a precision medicine approach in the management of AD.