Determination of inspection and maintenance policies for minimizing long-term risks and costs in deteriorating engineering environments constitutes a complex optimization problem. Major computational challenges include the (i) curse of dimensionality, due to exponential scaling of state/action set cardinalities with the number of components; (ii) curse of history, related to exponentially growing decision-trees with the number of decisionsteps; (iii) presence of state uncertainties, induced by inherent environment stochasticity and variability of inspection/monitoring measurements; (iv) presence of constraints, pertaining to stochastic long-term limitations, due to resource scarcity and other infeasible/undesirable system responses. In this work, these challenges are addressed within a joint framework of constrained Partially Observable Markov Decision Processes (POMDP) and multi-agent Deep Reinforcement Learning (DRL). POMDPs optimally tackle (ii)-(iii), combining stochastic dynamic programming with Bayesian inference principles. Multi-agent DRL addresses (i), through deep function parametrizations and decentralized control assumptions. Challenge (iv) is herein handled through proper state augmentation and Lagrangian relaxation, with emphasis on life-cycle risk-based constraints and budget limitations. The underlying algorithmic steps are provided, and the proposed framework is found to outperform wellestablished policy baselines and facilitate adept prescription of inspection and intervention actions, in cases where decisions must be made in the most resource-and risk-aware manner.