Activation of the Hedgehog (Hh)-signaling pathway due to deficiency in the Hh receptor Patched1 (Ptch) is the pivotal defect leading to formation of basal cell carcinoma (BCC). Recent reports provided evidence of Ptch-dependent secretion of vitamin D 3 -related compound, which functions as an endogenous inhibitor of Hh signaling by repressing the activity of the signal transduction partner of Ptch, Smoothened (Smo). This suggests that Ptch-deficient tumor cells are devoid of this substance, which in turn results in activation of Hhsignaling. Here, we show that the application of the physiologically active form of vitamin D 3, calcitriol, inhibits proliferation and growth of BCC of Ptch mutant mice in vitro and in vivo. This is accompanied by the activation of the vitamin D receptor (Vdr) and induction of BCC differentiation. In addition, calcitriol inhibits Hh signaling at the level of Smo in a Vdr-independent manner. The concomitant antiproliferative effects on BCC growth are stronger than those of the Hh-specific inhibitor cyclopamine, even though the latter more efficiently inhibits Hh signaling. Taken together, we show that exogenous supply of calcitriol controls the activity of 2 independent pathways, Hh and Vdr signaling, which are relevant to tumorigenesis and tumor treatment. These data suggest that calcitriol could be a therapeutic option in the treatment of BCC, the most common tumor in humans. Mol Cancer Ther; 10(11); 2179-88. Ó2011 AACR.