Ultrasensitivity
is a ubiquitous emergent property of biochemical
reaction networks. The design and construction of synthetic reaction
networks exhibiting ultrasensitivity has been challenging, but would
greatly expand the potential properties of life-like materials. Herein,
we exploit a general and modular strategy to reversibly regulate the
activity of enzymes using light and show how ultrasensitivity arises
in simple out-of-equilibrium enzymatic systems upon incorporation
of reversible photoswitchable inhibitors (PIs). Utilizing a chromophore/warhead
strategy, PIs of the protease α-chymotrypsin were synthesized,
which led to the discovery of inhibitors with large differences in
inhibition constants (
K
i
) for the different
photoisomers. A microfluidic flow setup was used to study enzymatic
reactions under out-of-equilibrium conditions by continuous addition
and removal of reagents. Upon irradiation of the continuously stirred
tank reactor with different light pulse sequences, i.e., varying the
pulse duration or frequency of UV and blue light irradiation, reversible
switching between photoisomers resulted in ultrasensitive responses
in enzymatic activity as well as frequency filtering of input signals.
This general and modular strategy enables reversible and tunable control
over the kinetic rates of individual enzyme-catalyzed reactions and
makes a programmable linkage of enzymes to a wide range of network
topologies feasible.