Editorial on the Research Topic Role of Protein-Protein Interactions in Metabolism: Genetics, Structure, Function This editorial describes the articles published under our research topic "Role of protein-protein interactions in metabolism: Genetics, structure, function." Our aim was to bring together researchers working on drug, steroid, and xenobiotic metabolism with interest in protein-protein interaction for presenting their latest findings and share their opinions on recent advances in the field. Recent advances in genetics (Meyer, 2004) and structural biology have greatly enhanced our understanding of molecular details of diversity and differences behind control of metabolic processes. The topic attracted a wide range of manuscripts using genetics, proteomics, biochemical, and structural biological approaches in study of protein-protein interactions. In six original articles, four reviews, and one mini-review, leading experts in the field described different approaches and use of advanced technologies in the study of protein-protein interactions related to metabolic processes. In a review of human UDP-glucuronosyltransfares (UGTs) Fujiwara et al. discussed the current understanding of the structure and function of UGTs in relation to protein-protein interactions and oligomerization and summarized their own as well as other related studies on interactions of UGTs with other proteins (Fujiwara et al., 2010). Nakamura et al. described the modification of UGT2B3 by creation of an N-glycosylation site to alter its sensitivity toward CYP3A1. It has been known for some time that CYP3A4 can change the activities of UGTs in isoform specific manner (Ishii et al., 2014). Rouleau et al. used a proteomics approach to study the protein-protein interactions of human UGT1As with other proteins including UGTs, transporters, and dehydrogenases. Role of UGTs in gene regulation as well as metabolic regulation by interactions with other proteins has become an emerging area of interest (Audet-Delage et al., 2017). Pavek provided a review of pregnane X receptor (PXR) interactions with other nuclear receptors and its role in gene regulation (Rulcova et al., 2010). Ryu et al. have reviewed the interactions of cytochrome P450 proteins (Omura, 2010; Zanger and Schwab, 2013) with the membrane associated progesterone receptors (MAPR). Many MAPRs share similarities to cytochrome b5 and therefore are evolutionary adapted for interactions with cytochrome P450s (Xie et al., 2011).