Y-box-binding protein-1, YB-1, is essential for cell division, but it is not clear how it functions. Using live imaging and confocal microscopy we show that YB-1 functions only in the last step of division, specifically being required to initiate cytokinesis.
ABSTRACTHigh levels of the cold shock protein Y-box-binding protein-1, YB-1, are tightly correlated with increased cell proliferation and cancer progression. However, the precise mechanism by which YB-1 regulates proliferation is unknown. Here, we found that YB-1 depletion in several cell lines resulted in cytokinesis failure, multinucleation and an increase in G1 transit time. Rescue experiments indicated that YB-1 was required for completion of cytokinesis. Using confocal imaging of cells undergoing cytokinesis both in vitro and in zebrafish embryos, we found that YB-1 was critical for microtubule organization during cytokinesis. Using mass spectrometry we identified multiple novel phosphorylation sites on YB-1. We show that phosphorylation of YB-1 at multiple serine residues was essential for its function during cytokinesis. Using atomistic modelling we show how multiple phosphorylations alter YB-1 conformation, allowing it to interact with protein partners. Our results establish phosphorylated YB-1 as a critical regulator of cytokinesis, defining for the first time precisely how YB-1 regulates cell division.Word Count 157 / 160 words