The targeted plasma parameters of the compact spherical tokamak (ST) Globus-M have basically been achieved. The reasons that prevent further extension of the operating space are discussed. The operational limits of Globus-M together with an understanding of the limiting reasons form the basis for defining the design requirements for the next-step, Globus-M2. The recent experimental and theoretical results achieved with Globus-M are discussed, the operational problems and the research programme are summarized and finally, the targeted Globus-M2 parameters are presented. The magnetic field and plasma current in Globus-M2 will be increased to 1 T and 0.5 MA, respectively. The plasma dimensions will remain unchanged. With auxiliary heating at a high average plasma density, the temperatures will be in the keV range and the collisionality parameter with ν * 1 will define the operational conditions. Noninductive current drive will be a major element of the programme. The engineering design issues of Globus-M2 tokamak are discussed and the technical tokamak parameters are confirmed by thermal load and stress analysis simulations. The experimental results obtained on Globus-M2 and the limits of its performance should clarify the feasibility of an ST-based super compact neutron source.
Experiments and simulations to achieve high values of plasma parameters at the Globus-M spherical tokamak (ST) at moderate auxiliary heating power (0.2-0.8 MW) are described. Important distinguishing features are the low edge safety factor range, which is unusual for spherical tokamaks, 2.7 < q < 5 and small plasma-outer wall space (3-5 cm). High ion heating efficiency with NB injection was demonstrated. Results of numerical simulation of fast ion trajectories are described and fast ion generation during NB injection and ICR heating is discussed. Also results on their confinement and slowing down processes investigation are presented. Reasons for achievement of high IC heating efficiency are outlined. Reliable H-mode regime achievement is described. Transport ASTRA modeling demonstrated that during NB heated H-mode ion heat diffusivity remains neoclassical and the particle diffusion coefficient inside transport barrier decreases significantly. RGTi divertor tile analysis was performed after irradiation by plasma during big number of shots (10000 shots in average). Mixed layer composition is measured and deuterium retention in different tokamak first wall area is estimated. Plasma jet injection experiments with upgraded plasma jet are described. Jet penetration to the plasma center with immense increase of density and temperature drop is proved and analogy with pellet injection is outlined.
The experimental and theoretical results obtained in the last two years on the interaction of neutral particle beams and high-frequency waves with a plasma using the spherical tokamak Globus-M are discussed. The experiments on the injection of low-energy proton beam of ∼300 eV directed particle energy are performed with a plasma gun that produces a hydrogen plasma jet of density up to 3 × 1022 m−3 and a high velocity up to 250 km s−1. A moderate density rise (up to 30%) is achieved in the central plasma region without plasma disruption. Experiments on high-energy (up to 30 keV) neutral beam injection into the D-plasma are analysed. Modelling results on confinement of fast particles inside the plasma column that follows the neutral beam injection are discussed. The influence of the magnetic field on the fast particle losses is argued. A neutral beam injection regime with primary ion heating is obtained and discussed. The new regime with fast current ramp-up and early neutral beam injection shows electron temperature rise and formation of broad Te profiles until the q = 1 flux surface enters the plasma column. An energetic particle mode in the range of frequencies 5–30 kHz and toroidal Alfvén eigenmodes in the range 50–300 kHz are recorded in that regime simultaneously with the Te rise. The energetic particle mode and toroidal Alfvén eigenmodes behaviour are discussed. The toroidal Alfvén eigenmode spectrum appears in Globus-M as a narrow band corresponding to n = 1. The first experimental results on plasma start-up and noninductive current drive generation are presented. The experiments are carried out with antennae providing mostly poloidal slowing down of waves with a frequency of 920 MHz, which is higher than a lower hybrid one existing under the experimental conditions. The high current drive efficiency is shown to be high (of about 0.25 A W−1), and its mechanism is proposed. Some near future plans of the experiments are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.