Results are presented of a search for heavy stable charged particles produced in proton-proton collisions at ffiffi ffi s p ¼ 13 TeV using a data sample corresponding to an integrated luminosity of 2.5 fb −1 collected in 2015 with the CMS detector at the CERN LHC. The search is conducted using signatures of anomalously high energy deposits in the silicon tracker and long time-of-flight measurements by the muon system. The data are consistent with the expected background, and upper limits are set on the cross sections for production of long-lived gluinos, top squarks, tau sleptons, and leptonlike long-lived fermions. These upper limits are equivalently expressed as lower limits on the masses of new states; the limits for gluinos, ranging up to 1610 GeV, are the most stringent to date. Limits on the cross sections for direct pair production of long-lived tau sleptons are also determined.
A search for new resonances decaying to WW, ZZ, or WZ is presented. Final states are considered in which one of the vector bosons decays leptonically and the other hadronically. Results are based on data corresponding to an integrated luminosity of 19.7 fb −1 recorded in proton-proton collisions at √ s = 8 TeV with the CMS detector at the CERN LHC. Techniques aiming at identifying jet substructures are used to analyze signal events in which the hadronization products from the decay of highly boosted W or Z bosons are contained within a single reconstructed jet. Upper limits on the production of generic WW, ZZ, or WZ resonances are set as a function of the resonance mass and width. We increase the sensitivity of the analysis by statistically combining the results of this search with a complementary study of the all-hadronic final state. Upper limits at 95% confidence level are set on the bulk graviton production cross section in the range from 700 to 10 fb for resonance masses between 600 and 2500 GeV, respectively. These limits on the bulk graviton model are the most stringent to date in the diboson final state.Keywords: Hadron-Hadron Scattering, Particle and resonance production, Jet substructure In many theoretical extensions of the SM, the spontaneous breaking of the EW symmetry is associated with new strong dynamics appearing at the TeV scale. For instance, the origin of the new dynamics may be due to new interactions [10][11][12] or a composite Higgs boson [13][14][15]. These extensions of the SM predict the existence of new resonances coupling to pairs of massive vector bosons (VV, where V = W or Z). Results from previous direct searches at and ATLAS [20][21][22][23], and from indirect bounds from the EW sector and from flavor physics [24,25] generally place lower limits on the masses of these VV resonances above the TeV scale.Models extending the number of spatial dimensions are of particular interest in the attempt to explain the apparently large difference between the EW and the gravitational scale. Some of these models predict the existence of a so-called tower of Kaluza-Klein (KK) excitations of a spin-2 boson, the KK graviton. The WW and ZZ channels are some of the possible decay modes of the Randall-Sundrum (RS) graviton [26] in warped extra dimension models. The original RS model (here denoted as RS1) can be extended to the bulk graviton (G bulk ) model, which addresses the flavor structure of the SM through localization of fermions in the warped extra dimension [27][28][29]. In this scenario, coupling of the graviton to light fermions is highly suppressed and the decays into photons are negligible. On the other hand, the production of gravitons from gluon fusion and their decays into a pair of massive gauge bosons can be sizable at hadron colliders. The model has two free parameters: the mass of the first mode of the KK bulk graviton, M G , and the ratio k/M Pl , where k is the unknown curvature scale of the extra dimension, and M Pl ≡ M Pl / √ 8π is the reduced Planck mass. Previous di...
Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p-Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range jηj < 2.4, and a third particle measured in the hadron forward calorimeters (4.4 < jηj < 5). The observed differences between the same and opposite sign correlations, as functions of multiplicity and η gap between the two charged particles, are of similar magnitude in p-Pb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.
Angular distributions of the decay B 0 → K * 0 µ + µ − are studied using a sample of proton-proton collisions at √ s = 8 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 20.5 fb −1 . An angular analysis is performed to determine the P 1 and P 5 parameters, where the P 5 parameter is of particular interest because of recent measurements that indicate a potential discrepancy with the standard model predictions. Based on a sample of 1397 signal events, the P 1 and P 5 parameters are determined as a function of the dimuon invariant mass squared. The measurements are in agreement with predictions based on the standard model.
The OLYMPUS Collaboration reports on a precision measurement of the positron-proton to electronproton elastic cross section ratio, R 2γ , a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈20°to 80°. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved gas electron multiplier and multiwire proportional chamber detectors at 12°, as well as symmetric Møller or Bhabha calorimeters at 1.29°. A total integrated luminosity of 4.5 fb −1 was collected. In the extraction of R 2γ , radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R 2γ , presented here for a wide range of virtual photon polarization 0.456 < ϵ < 0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.