Human erythrocytes were induced to release membrane vesicles by treatment with Ca2+ and ionophore A23187. In addition to the biochemical changes already known to accompany loading of human erythrocytes with Ca2+, the present study reveals that tyrosine phosphorylation of the anion exchanger band 3 protein also occurs. The relationship between tyrosine phosphorylation of band 3 and membrane vesiculation was analysed using quinine (a non-specific inhibitor of the Ca(2+)-activated K+ channel, and the only known inhibitor of Ca(2+)-induced vesiculation) and charybdotoxin, a specific inhibitor of the apamin-insensitive K(+)-channel. Both inhibitors suppressed tyrosine phosphorylation of band 3. In the presence of quinine, membrane vesiculation was also suppressed. In contrast, at the concentration of charybdotoxin required to suppress tyrosine phosphorylation of band 3, membrane vesiculation was only mildly inhibited (16-23% inhibition), suggesting that tyrosine phosphorylation of band 3 is not necessary for membrane vesiculation. Phosphorylation of band 3 was in fact observed when erythrocytes were induced to shrink in a Ca(2+)-independent manner, e.g. by treatment with the K+ ionophore valinomycin or with hypertonic solutions. These observations suggest that band 3 tyrosine phosphorylation occurs when cell volume regulation is required.
Human erythrocyte band 3 becomes rapidly phosphorylated on tyrosine residues after exposure of erythrocytes to hypertonic conditions. The driving force for this phosphorylation reaction seems to be a decrease in cell volume, because (1) changes in band 3 phosphotyrosine content accurately track repeated changes in erythrocyte volume through several cycles of swelling and shrinking; (2) the level of band 3 phosphorylation is independent of the osmolyte employed but strongly sensitive to the magnitude of cell shrinkage; and (3) exposure of erythrocytes to hypertonic buffers under conditions in which intracellular osmolarity increases but volume does not change (nystatin-treated cells) does not promote an increase in tyrosine phosphorylation. We hypothesize that shrinkage-induced tyrosine phosphorylation results either from an excluded-volume effect, stemming from an increase in intracellular crowding, or from changes in membrane curvature that accompany the decrease in cell volume. Although the net phosphorylation state of band 3 is shown to be due to a delicate balance between a constitutively active tyrosine phosphatase and constitutively active tyrosine kinase, the increase in phosphorylation during cell shrinkage was demonstrated to derive specifically from an activation of the latter. Further, a peculiar inhibition pattern of the volume-sensitive erythrocyte tyrosine kinase that matched that of p72syk, a tyrosine kinase already known to associate with band 3 in vivo, suggested the involvement of this kinase in the volume-dependent response.
L-Carnitine (LC) in the preservation medium during storage of red blood cells (RBC) can improve the mean 24-hr percent recovery in vivo and increase RBC life-span after reinfusion. The purpose of the study was to investigate the differences in the biochemical properties of RBCs stored in the presence or absence of LC, and the cell-age related responses to storage conditions and to LC. RBC concentrates in saline-adenine-glucose-mannitol (SAG-M) were stored in the presence or absence of 5 mM LC at 48C for up to 8 weeks. RBC subpopulations of different densities were prepared by centrifugation on Stractan density gradient. Cells were sampled at 0, 3, 6, and 8 weeks, and hematological and cellular properties analyzed (MCV, MCHC, 4.1a/4.1b ratio as a cell age parameter, intracellular Na + and K + ). After 6 weeks, MCV of RBC stored in the presence of LC was lower than that of controls (6 weeks MCV: controls 95.4 ± 1.8 fl; LC 91.5 ± 2.0 fl; n = 6; P < 0.005). This was due to swelling of control cells, and affected mainly older RBCs. LC appeared to reduce or retard cell swelling. Among the osmotically active substances whose changes during storage could contribute to cell swelling, only intracellular Na
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.