A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised e ± p scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q 2 , and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions, HERAPDF1.0, with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result.
A detailed analysis is presented of the diffractive deep-inelastic scattering process ep → eXY , where Y is a proton or a low mass proton excitation carrying a fraction 1−x I P > 0.95 of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies |t| < 1 GeV 2 . Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range 3.5 ≤ Q 2 ≤ 1600 GeV 2 , triple differentially in x I P , Q 2 and β = x/x I P , where x is the Bjorken scaling variable. At low x I P , the data are consistent with a factorisable x I P dependence, which can be described by the exchange of an effective pomeron trajectory with intercept α IP (0) = 1.118 ± 0.008 (exp.) +0.029 −0.010 (model). Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the Q 2 and β dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the Q 2 range studied. Total and differential cross sections are also measured for the diffractive charged current process e + p →ν e XY and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current ep cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on Q 2 at fixed x I P and x or on x at fixed Q 2 and β.
A measurement of charm and beauty dijet photoproduction cross sections at the ep collider HERA is presented. Events are selected with two or more jets of transverse momentum p jet 1(2) t > 11(8) GeV in the central range of pseudo-rapidity −0.9 < η jet 1(2) < 1.3. The fractions of events containing charm and beauty quarks are determined using a method based on the impact parameter, in the transverse plane, of tracks to the primary vertex, as measured by the H1 central vertex detector. Differential dijet cross sections for charm and beauty, and their relative contributions to the flavour inclusive dijet photoproduction cross section, are measured as a function of the transverse momentum of the leading jet, the average pseudo-rapidity of the two jets and the observable x obs γ . Taking into account the theoretical uncertainties, the charm cross sections are consistent with a QCD calculation in next-to-leading order, while the predicted cross sections for beauty production are somewhat lower than the measurement.
Measurements of open charm production cross sections in deep-inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections σ cc red for charm production are obtained in the kinematic range of photon virtuality 2.5 ≤ Q 2 ≤ 2000 GeV 2 and Bjorken scaling variable 3 · 10 −5 ≤ x ≤ 5 · 10 −2 . The combination method accounts for the correlations of the systematic uncertainties among the different data sets. The combined charm data together with the combined inclusive a e-mail: levy@alzt. deep-inelastic scattering cross sections from HERA are used as input for a detailed NLO QCD analysis to study the influence of different heavy flavour schemes on the parton distribution functions. The optimal values of the charm mass as a parameter in these different schemes are obtained. The implications on the NLO predictions for W ± and Z production cross sections at the LHC are investigated. Using the fixed flavour number scheme, the running mass of the charm quark is determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.