We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 M ⊙ during the first and second observing runs of the advanced gravitationalwave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6 þ3.2 −0.7 M ⊙ and 84.4 þ15.8 −11.1 M ⊙ and range in distance between 320 þ120 −110 and 2840 þ1400 −1360 Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110 − 3840 Gpc −3 y −1 for binary neutron stars and 9.7 − 101 Gpc −3 y −1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610 Gpc −3 y −1 .
Gamma-ray bursts (GRBs), associated with the collapse of massive stars or the collisions of compact objects, are the most luminous events in our universe. However, there is still much to learn about the nature of the relativistic jets launched from the central engines of these objects. We examine how jet structure-that is, the energy and velocity distribution as a function of angle-affects observed GRB afterglow light curves. Using the package afterglowpy, we compute light curves arising from an array of possible jet structures, and present the suite of models that can fit the coincident electromagnetic observations of GW190814 (which is likely due to a background AGN). Our work emphasizes not only the need for broadband spectral and timing data to distinguish among jet structure models, but also the necessity for high resolution radio follow-up to help resolve background sources that may mimic a GRB afterglow.
On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to ( – if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass and the total mass of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250–2810 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.