A two-year study of recirculating induction heavy ion accelerators as low-cost driver for inertial-fusion energy applications was recently completed. The projected cost of a 4 MJ accelerator was estimated to be about $500 M (million) and the efficiency was estimated to be 35%. The principal technology issues include energy recovery of the ramped dipole magnets, which is achieved through use of ringing inductive/capacitive circuits, and high repetition rates of the induction cell pulsers, which is accomplished through arrays of field effect transistor (FET) switches. Principal physics issues identified include minimization of particle loss from interactions with the background gas, and more demanding emittance growth and centroid control requirements associated with the propagation of space-charge-dominated beams around bends and over large path lengths. In addition, instabilities such as the longitudinal resistive instability, beam-breakup instability and betatron-orbit instability were found to be controllable with careful design.
A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.
The DARHT II accelerator at LANL is preparing a series of preliminary tests at the reduced voltage of 7.8 MeV. The transport hardware between the end of the accelerator and the final target magnet was shipped to LLNL and installed on ETA II. Using the ETA II beam at 5.2 MeV we completed a set of experiments designed reduce start up time on the DARHT II experiments and run the equipment in a configuration adapted to the reduced energy. Results of the beam transport using a reduced energy beam, including the kicker and kicker pulser system will be presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.