The possibility that neutrinos may be their own antiparticles, unique among the known fundamental particles, arises from the symmetric theory of fermions proposed by Ettore Majorana in 19371. Given the profound consequences of such Majorana neutrinos, among which is a potential explanation for the matter–antimatter asymmetry of the universe via leptogenesis2, the Majorana nature of neutrinos commands intense experimental scrutiny globally; one of the primary experimental probes is neutrinoless double beta (0νββ) decay. Here we show results from the search for 0νββ decay of 130Te, using the latest advanced cryogenic calorimeters with the CUORE experiment3. CUORE, operating just 10 millikelvin above absolute zero, has pushed the state of the art on three frontiers: the sheer mass held at such ultralow temperatures, operational longevity, and the low levels of ionizing radiation emanating from the cryogenic infrastructure. We find no evidence for 0νββ decay and set a lower bound of the process half-life as 2.2 × 1025 years at a 90 per cent credibility interval. We discuss potential applications of the advances made with CUORE to other fields such as direct dark matter, neutrino and nuclear physics searches and large-scale quantum computing, which can benefit from sustained operation of large payloads in a low-radioactivity, ultralow-temperature cryogenic environment.
The cryogenic underground observatory for rare events (CUORE) is a cryogenic experiment searching for neutrinoless double beta decay (0) of 130 Te. The detector consists of an array of 988 TeO 2 crystals arranged in a compact cylindrical structure of 19 towers. We report the CUORE initial operations and optimization campaigns. We then present the CUORE results on 0 and 2 decay of 130 Te obtained from the analysis of the physics data acquired in 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.