Shape coexistence in the light krypton isotopes was studied in two low-energy Coulomb excitation experiments using radioactive 74 Kr and 76 Kr beams from the SPIRAL facility at GANIL. The ground-state bands in both isotopes were populated up to the 8 + state via multi-step Coulomb excitation, and several non-yrast states were observed. Large sets of matrix elements were extracted for both nuclei from the observed γ -ray yields. Diagonal matrix elements were determined by utilizing the reorientation effect. In both isotopes the spectroscopic quadrupole moments for the ground-state bands and the bands based on excited 0 + 2 states are found to have opposite signs. The experimental data are interpreted within a phenomenological two-band mixing model and model-independent quadrupole invariants are deduced for the relevant 0 + states using the complete sets of matrix elements and the formalism of quadrupole sum rules. Configuration mixing calculations based on triaxial Hartree-Fock-Bogolyubov calculations with the Gogny D1S effective interaction have been performed and are compared both with the experimental results and with recent calculations using the Skyrme SLy6 effective interaction and the full generator-coordinate method restricted to axial shapes.
The E1 strength distribution in 68Ni has been investigated using Coulomb excitation in inverse kinematics at the R3B-LAND setup and by measuring the invariant mass in the one- and two-neutron decay channels. The giant dipole resonance and a low-lying peak (pygmy dipole resonance) have been observed at 17.1(2) and 9.55(17) MeV, respectively. The measured dipole polarizability is compared to relativistic random phase approximation calculations yielding a neutron-skin thickness of 0.17(2) fm. A method and analysis applicable to neutron-rich nuclei has been developed, allowing for a precise determination of neutron skins in nuclei as a function of neutron excess.
At the ALADIN-LAND setup at GSI the unbound nucleus 13 Be has been produced in one-neutron knockout reactions from a 304 MeV/nucleon relativistic beam of 14 Be ions impinging on a liquid hydrogen target. An analysis of the data including all available information about 13 Be, and in particular recent data from a similar experiment performed at RIKEN, has been performed. A consistent description is reached. It is found that the excitation spectrum is dominated by s-waves at low energy, which solves problems from previous seemingly contradictory interpretations. A possible interference between two s-states in 13 Be is also discussed. The results indicate that the ground-state wave function of 14 Be is dominated by valence neutrons in the s-shell contributing with 60-75% of the total neutron knockout cross section.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.