This paper describes the standalone magnet cold testing of the high temperature superconducting magnet Feather-M2.1-2. This magnet was constructed within the European funded FP7-EUCARD2 collaboration to test Roebel type HTS cable, and is one of the first high temperature superconducting dipole magnets in the world. The magnet was operated in forced flow helium gas with temperatures ranging between 5 to 85 K. During the tests a magnetic dipole field of 3.1 T was reached inside the aperture at a current of 6.5 kA and a temperature of 5.7 K. These values are in agreement with the self-field critical current of the used SuperOx cable assembled with Sunam tapes (lowperformance batch), thereby confirming that no degradation occurred during winding, impregnation, assembly and cool-down of the magnet. The magnet was quenched many tens of times by ramping over the critical current and no degradation nor training was evident. During the tests the voltage over the coil was monitored in the micro-volt range. An inductive cancellation wire was used to remove the inductive component, thereby significantly reducing noise levels. Close to the quench current, drift was detected both in temperature and voltage over the coil. This drifting happens in a time scale of minutes and is a clear indication that the magnet has reached its limit. All quenches happened approximately at the same average electric field and thus none of the quenches occurred unexpectedly.
The HQ magnet is a 120 mm aperture, 1-meter-long Nb3Sn quadrupole developed by the LARP collaboration in the framework of the High-Luminosity LHC project. A first series of coils was assembled and tested in 5 assemblies of the HQ01 series. The HQ01e model achieved a maximum gradient of 170 T/m at 4.5 K at LBNL in 2010-2011 and reached 184 T/m at 1.9 K at CERN in 2012. A new series of coils incorporating major design changes was fabricated for the HQ02 series. The first model, HQ02a, was tested at Fermilab where it reached 98% of the short sample limit at 4.5 K with a gradient of 182 T/m in 2013. However, the full training of the coils at 1.9 K could not be performed due to a current limit of 15 kA. Following this test, the azimuthal coil pre-load was increased by about 30 MPa and an additional current lead was installed at the electrical center of the magnet for quench protection studies. The test name of this magnet changed to HQ02b. In 2014, HQ02b was then shipped to CERN as the first opportunity for full training at 1.9 K. In this paper, we present a comprehensive summary of the HQ02 test results including: magnet training at 1.9 K with increased pre-load, quench origin and propagation, and ramp rate dependence. A series of powering tests was also performed to assess changes in magnet performance with a gradual increase of the MIITs. We also present the results of quench protection studies using different setting for detection, heater coverage, energy extraction and the Coupling-Loss Induced Quench (CLIQ) system. However, the full training of the coils at 1.9 K could not be performed due to a current limit of 15 kA. Following this test, the azimuthal coil pre-load was increased by about 30 MPa and an additional current lead was installed at the electrical center of the magnet for quench protection studies. The test name of this magnet changed to HQ02b. In 2014, HQ02b was then shipped to CERN as the first opportunity for full training at 1.9 K. In this paper, we present a comprehensive summary of the HQ02 test results including: magnet training at 1.9 K with increased preload, quench origin and propagation, and ramp rate dependence. A series of powering tests was also performed to assess changes in magnet performance with a gradual increase of the MIITs. We also present the results of quench protection studies using different setting for detection, heater coverage, energy extraction and the Coupling-Loss Induced Quench (CLIQ) system.
International audienceThe EuCARD2 collaboration aims at the development of a 10 kA-class superconducting, high current density cable suitable for accelerator magnets, to be tested in small coils and magnets capable to deliver 3-5 T when energized in stand-alone mode, and 15-18 T when inserted in a 12-13 T background magnet. REBCO tape, assembled in a Roebel cable, was selected as conductor. The developed REBCO tape has reached a record engineering critical current density, at 4.2 K and 18 T of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.