Parkinson's disease (PD) is a progressive neurodegenerative disorder in which the major pathologic substrate is a loss of dopaminergic neurons from the substantia nigra. Our main objective was to determine the correspondence between changes in the substantia nigra, evident in neuromelanin and iron sensitive magnetic resonance imaging (MRI), and dopaminergic striatal innervation loss in patients with PD. Eighteen patients and 18 healthy control subjects were included in the study. Using neuromelanin-MRI, we measured the volume of the substantia nigra and the contrast-to-noise-ratio between substantia nigra and a background region. The apparent transverse relaxation rate and magnetic susceptibility of the substantia nigra were calculated from dual-echo MRI. Striatal dopaminergic innervation was measured as density of dopamine transporter (DAT) by means of single-photon emission computed tomography and [123I] N-ω-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl) tropane. Patients showed a reduced volume of the substantia nigra and contrast-to-noise-ratio and both positively correlated with the corresponding striatal DAT density. The apparent transverse relaxation rate and magnetic susceptibility values of the substantia nigra did not differ between patients and healthy controls. The best predictor of DAT reduction was the volume of the substantia nigra. Clinical and imaging correlations were also investigated for the locus coeruleus. Our results suggest that neuromelanin-MRI can be used for quantifying substantia nigra pathology in PD where it closely correlates with dopaminergic striatal innervation loss. Longitudinal studies should further explore the role of Neuromelanin-MRI as an imaging biomarker of PD, especially for subjects at risk of developing the disease.
The primary mechanism underlying contrast in neuromelanin-MRI appears to be the T reduction associated with melanin-iron complexes. The macromolecular content is not significantly influenced by the presence of melanin with or without iron, and thus the MT is not directly affected. However, as T plays a role in determining the MT-weighted signal, the magnetization transfer ratio is reduced in the presence of melanin-iron complexes. Magn Reson Med 78:1790-1800, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Purpose To evaluate the feasibility of a standardized protocol for acquisition and analysis of dynamic contrast material-enhanced (DCE) and dynamic susceptibility contrast (DSC) magnetic resonance (MR) imaging in a multicenter clinical setting and to verify its accuracy in predicting glioma grade according to the new World Health Organization 2016 classification. Materials and Methods The local research ethics committees of all centers approved the study, and informed consent was obtained from patients. One hundred patients with glioma were prospectively examined at 3.0 T in seven centers that performed the same preoperative MR imaging protocol, including DCE and DSC sequences. Two independent readers identified the perfusion hotspots on maps of volume transfer constant (K), plasma (v) and extravascular-extracellular space (v) volumes, initial area under the concentration curve, and relative cerebral blood volume (rCBV). Differences in parameters between grades and molecular subtypes were assessed by using Kruskal-Wallis and Mann-Whitney U tests. Diagnostic accuracy was evaluated by using receiver operating characteristic curve analysis. Results The whole protocol was tolerated in all patients. Perfusion maps were successfully obtained in 94 patients. An excellent interreader reproducibility of DSC- and DCE-derived measures was found. Among DCE-derived parameters, v and v had the highest accuracy (are under the receiver operating characteristic curve [A] = 0.847 and 0.853) for glioma grading. DSC-derived rCBV had the highest accuracy (A = 0.894), but the difference was not statistically significant (P > .05). Among lower-grade gliomas, a moderate increase in both v and rCBV was evident in isocitrate dehydrogenase wild-type tumors, although this was not significant (P > .05). Conclusion A standardized multicenter acquisition and analysis protocol of DCE and DSC MR imaging is feasible and highly reproducible. Both techniques showed a comparable, high diagnostic accuracy for grading gliomas. RSNA, 2018 Online supplemental material is available for this article.
ObjectiveSince the introduction of cone-beam computed tomography (CBCT) in dentistry, this technology has enabled distortion-free three-dimensional cephalometric analysis for orthodontic and orthognathic surgery diagnosis. However, CBCT is associated with significantly higher radiation exposure than traditional routine bidimensional examinations for orthodontic diagnosis, although low-dose protocols have markedly reduced radiation exposure over time.The objective of this preliminary feasibility study is to compare the accuracy and diagnostic capabilities of an already-validated three-dimensional cephalometric analysis on CBCT to those of an analysis on 3-T magnetic resonance imaging (3T-MRI) to assess whether the latter can deliver a comparable quality of information while avoiding radiation exposure.Materials and methodsIn order to test the feasibility of three-dimensional cephalometry on 3T-MRI, 18 subjects (4 male; 14 female) with mean age 37.8 ± SD 10.2, who had undergone both maxillofacial CBCT and maxillofacial 3T-MRI for various purposes within 1 month, were selected from the archive of the Department of Dentistry and Maxillofacial Surgery of Fondazione Ospedale Policlinico Maggiore, IRCCS, Milano, Italy.A three-dimensional cephalometric analysis composed of ten midsagittal and four bilateral landmarks and 24 measurements (11 angular, 13 linear) was performed on both scans using Mimics Research® v. 17.0 (NV, Technologielaan 15, 3001 Leuven, Belgium). Cephalometric analysis was performed twice by two independent orthodontists for each scan, and each orthodontist repeated the measurements 3 weeks later. Statistical analysis was performed with SPSS® 20.00 for Windows (IBM® Corporation, Sommers, NY, USA). A Bland-Altman test for each cephalometric value was performed to assess the agreement between the procedures. The intraclass correlation coefficient (ICC) was used to assess interobserver and intraobserver reliability. The coefficient of variation was used to evaluate precision.ResultsBoth procedures showed good reliability, with mean intraobserver ICCs of 0.977/0.971 for CBCT and 0.881/0.912 for MRI. The average interobserver ICCs were 0.965 for CBCT and 0.833 for MRI. A Bland-Altman analysis for the cephalometric tracing revealed a similar range of agreement between the two modalities; the bias range (mean ± SD) was − 0.25–0.66 mm (0.174 ± 0.31) for distances and − 0.41–0.54° (0.12 ± 0.33) for angles.ConclusionsWithin the main limitation of this pilot study, that is, the small sample, it is possible to state that cephalometric measurements on 3T-MRI seem to possess adequate reliability and repeatability and that they show satisfying agreement with values measured on CBCTs. An MRI examination does not expose patients to ionizing radiation and could provide an alternative to CBCT for three-dimensional cephalometrics in the future.
Axonal injury is a major contributor to adverse outcomes following brain trauma. However, the extent of axonal injury cannot currently be assessed reliably in living humans. Here, we used two experimental methods with distinct noise sources and limitations in the same cohort of 15 patients with severe traumatic brain injury to assess axonal injury. One hundred kilodalton cut-off microdialysis catheters were implanted at a median time of 17 h (13-29 h) after injury in normal appearing (on computed tomography scan) frontal white matter in all patients, and samples were collected for at least 72 h. Multiple analytes, such as the metabolic markers glucose, lactate, pyruvate, glutamate and tau and amyloid-β proteins, were measured every 1-2 h in the microdialysis samples. Diffusion tensor magnetic resonance imaging scans at 3 T were performed 2-9 weeks after injury in 11 patients. Stability of diffusion tensor imaging findings was verified by repeat scans 1-3 years later in seven patients. An additional four patients were scanned only at 1-3 years after injury. Imaging abnormalities were assessed based on comparisons with five healthy control subjects for each patient, matched by age and sex (32 controls in total). No safety concerns arose during either microdialysis or scanning. We found that acute microdialysis measurements of the axonal cytoskeletal protein tau in the brain extracellular space correlated well with diffusion tensor magnetic resonance imaging-based measurements of reduced brain white matter integrity in the 1-cm radius white matter-masked region near the microdialysis catheter insertion sites. Specifically, we found a significant inverse correlation between microdialysis measured levels of tau 13-36 h after injury and anisotropy reductions in comparison with healthy controls (Spearman's r = -0.64, P = 0.006). Anisotropy reductions near microdialysis catheter insertion sites were highly correlated with reductions in multiple additional white matter regions. We interpret this result to mean that both microdialysis and diffusion tensor magnetic resonance imaging accurately reflect the same pathophysiological process: traumatic axonal injury. This cross-validation increases confidence in both methods for the clinical assessment of axonal injury. However, neither microdialysis nor diffusion tensor magnetic resonance imaging have been validated versus post-mortem histology in humans. Furthermore, future work will be required to determine the prognostic significance of these assessments of traumatic axonal injury when combined with other clinical and radiological measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.