The first experiments on noninductive current drive (CD) using lower hybrid waves in a spherical tokamak are described. Waves at 2.45 GHz were launched by a 10 waveguide grill with 120° phase shift between neighbouring waveguides. The experimental results for a novel poloidal slowing-down scheme are described. The CD efficiency is found to be somewhat larger than that predicted theoretically whilst at the same time being somewhat less than that for standard tokamak lower hybrid CD. Geodesic acoustic modes (GAM) have been discovered in Globus-M. GAMs are localized 2-3 cm inside the separatrix. The GAM frequency agrees with theory. The mode structures of plasma density and magnetic field oscillation at the GAM frequency have been studied. Fast particle confinement during neutral beam injection has been investigated and numerically simulated. Alfvén instabilities excited by fast particles were detected by a toroidal Mirnov probe array. Their excitation conditions are discussed and the dynamics of fast ion losses induced by Alfvén eigenmodes is presented. Preliminary experiments on the isotopic effect influence on global confinement in the ohmic Nuclear Fusion
During the past decade, plasma physics research promoting the physics base of ITER and developing novel concepts such as a compact fusion neutron source has been conducted on the Globus-M spherical tokamak (ST) (R = 36 cm, a = 24 cm, I p ⩽ 250 kA, B T ⩽ 0.4 T). Tokamak reconstruction is imminent. The upgraded tokamak Globus-M2 will have the same vacuum chamber and an enhanced magnetic system to provide B T = 1 T and I p = 500 kA. In this paper we outline the most important research directions and the main results obtained on Globus-M and make some predictions about the possibilities and parameters of Globus-M2.
The paper provides an overview of the results obtained on the spherical tokamak Globus-M2 in 2019–2020. The experiments were performed with the toroidal magnetic field up to 0.8 T and plasma current up to 0.4 MA (80% of the design values). The temperature of electrons 1 keV and ions 800 eV at the plasma density of 1020 m−3 were recorded at neutral beam injection (850 kW, 28.5 keV). Heat conductivity analysis was made by means of the codes ASTRA 7.0, NCLASS, SPIDER, NUBEAM, 3D fast ion tracking algorithm on the basis of the experimental data. A scaling for spherical tokamaks, which demonstrates strong τ
E dependence on magnetic field and moderate dependence on plasma current, has been confirmed for the magnetic field up to 0.8 T. For Globus-M/M2 it is
. The dependence of the normalized energy confinement time (B
T
τ
E) on collisionality (ν*) in a wide range 0.02 < ν* < 0.2 was determined as . A non-inductively driven current was recorded during the launch of the electromagnetic waves of the lower hybrid frequency range (2.45 GHz) with the help of a toroidally oriented grill. The fraction of noninductively driven current has exceeded 70% in the discharge with a total current of 0.2 MA. The achieved values of efficiency η = (0.15–0.4) × 1019 A m−2 W−1 are comparable with the results obtained on conventional tokamaks. This paper presents the results of experiments on the study of Alfvén modes. The resulting scaling for the loss of fast ions caused by toroidal Alfvén eigenmodes demonstrates their decrease with increasing magnetic field and plasma current. Observation of Alfvén cascades made it possible to apply the method of MHD spectroscopy to determine the evolution of q
min in a discharge. Also presented are the results of SOL investigation. Attention is also paid to the development of diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.