We analyzed a genetic polymorphism of Fcγ receptor IIIa (CD16) that is present on position 158 (Phe or Val) in the membrane-proximal, IgG-binding domain. With a polymerase chain reaction–based allele-specific restriction analysis assay we genotyped 87 donors and found gene frequencies of 0.57 and 0.43 for FcγRIIIA-158F and −158V, respectively. A clear linkage was observed between the FcγRIIIA-158F and −48L genotypes on the one hand and the FcγRIIIA-158V and −48H or −48R genotypes on the other hand (χ2 test; P < .001). To determine the functional consequences of this FcγRIIIa-158V/F polymorphism, we performed IgG binding experiments with natural killer (NK) cells from genotyped donors. All donors were also typed for the recently described triallelic FcγRIIIa-48L/R/H polymorphism. NK cells were treated with lactic acid to remove cell-associated IgG. FcγRIIIaNK158F bound significantly less IgG1, IgG3, and IgG4 than did FcγRIIIaNK-158V, irrespective of the FcγRIIIa-48 phenotype. Moreover, freshly isolated NK cells from FcγRIIIa-158VV individuals carried significantly more cytophilic IgG than did NK cells from FcγRIIIa-158FF individuals. In addition, CD16 monoclonal antibody (MoAb) MEM154 bound more strongly to FcγRIIIa-158V, compared with -158F, again independently of the FcγRIIIa-48 phenotype. The binding of MoAb B73.1 was not influenced by the FcγRIIIa-158V/F polymorphism, but proved to depend solely on the amino acid present at position 48 of FcγRIIIa. In conclusion, the previously reported differences in IgG binding among the three FcγRIIIa-48L/R/H isoforms are a consequence of the linked, biallelic FcγRIIIa-158V/F polymorphism at amino-acid position 158.
We analyzed a genetic polymorphism of Fcγ receptor IIIa (CD16) that is present on position 158 (Phe or Val) in the membrane-proximal, IgG-binding domain. With a polymerase chain reaction–based allele-specific restriction analysis assay we genotyped 87 donors and found gene frequencies of 0.57 and 0.43 for FcγRIIIA-158F and −158V, respectively. A clear linkage was observed between the FcγRIIIA-158F and −48L genotypes on the one hand and the FcγRIIIA-158V and −48H or −48R genotypes on the other hand (χ2 test; P < .001). To determine the functional consequences of this FcγRIIIa-158V/F polymorphism, we performed IgG binding experiments with natural killer (NK) cells from genotyped donors. All donors were also typed for the recently described triallelic FcγRIIIa-48L/R/H polymorphism. NK cells were treated with lactic acid to remove cell-associated IgG. FcγRIIIaNK158F bound significantly less IgG1, IgG3, and IgG4 than did FcγRIIIaNK-158V, irrespective of the FcγRIIIa-48 phenotype. Moreover, freshly isolated NK cells from FcγRIIIa-158VV individuals carried significantly more cytophilic IgG than did NK cells from FcγRIIIa-158FF individuals. In addition, CD16 monoclonal antibody (MoAb) MEM154 bound more strongly to FcγRIIIa-158V, compared with -158F, again independently of the FcγRIIIa-48 phenotype. The binding of MoAb B73.1 was not influenced by the FcγRIIIa-158V/F polymorphism, but proved to depend solely on the amino acid present at position 48 of FcγRIIIa. In conclusion, the previously reported differences in IgG binding among the three FcγRIIIa-48L/R/H isoforms are a consequence of the linked, biallelic FcγRIIIa-158V/F polymorphism at amino-acid position 158.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.