When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42±3 μas, which is circular and encompasses a central depression in brightness with a flux ratio 10:1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M=(6.5±0.7)×10 9 M e . Our radiowave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible.
We analyze deep near-IR adaptive optics imaging (taken with NAOS/CONICA on the VLT) 1 as well as new proper motion data of the nuclear star cluster of the Milky Way. The surface density distribution of faint (H≤ 20, K s ≤ 19) stars peaks within 0.2 ′′ of the black hole candidate SgrA ⋆ . The radial density distribution of this stellar 'cusp' follows a power law of exponent α ∼ 1.3 − 1.4. The K-band luminosity function of the overall nuclear stellar cluster (within 9 ′′ of SgrA ⋆ ) resembles that of the large scale, Galactic bulge, but shows an excess of stars at K s ≤ 14. It fits population synthesis models of an old, metal rich stellar population with a contribution from young, early and late-type stars at the bright end. In contrast, the cusp within ≤ 1.5 ′′ of SgrA ⋆ appears to have a featureless luminosity function, suggesting that old, low mass horizontal branch/red clump stars are lacking. Likewise there appear to be fewer late type giants. The innermost cusp also contains a group of moderately bright, early type stars that are tightly bound to the black hole. We interpret these results as evidence that the stellar properties change significantly from the outer cluster (≥ a few arcsecs) to the dense innermost region around the black hole.We find that most of the massive early type stars at distances 1-10" from SgrA ⋆ are located in two rotating and geometrically thin disks. These disks are inclined at large angles and counter-rotate with respect to each other. Their stellar content is essentially the same, indicating that they formed at the same time. We conclude that of the possible formation scenarios for these massive stars the most probable one is that 5-8 million years ago two clouds fell into the center, collided, were shock compressed and then formed two rotating (accretion) disks orbiting the central black hole. For the OB-stars in the central arcsecond, on the other hand, a stellar merger model is the most appealing explanation. These stars may thus be 'super-blue-stragglers', formed and 'rejuvenated' through mergers of lower mass stars in the very dense (≥ 10 8 M ⊙ pc −3 ) environment of the cusp. The 'collider model' also accounts for the lack of giants within the central few arcseconds.The star closest to SgrA ⋆ in 2002, S2, exhibits a 3.8 µm excess. We propose that the mid-IR emission either comes from the accretion flow around the black hole itself, or from dust in the accretion flow that is heated by the ultra-violet emission of S2.1 Based on observations obtained at the European Southern Observatory, Chile
Many galaxies are thought to have supermassive black holes at their centres-more than a million times the mass of the Sun. Measurements of stellar velocities and the discovery of variable X-ray emission have provided strong evidence in favour of such a black hole at the centre of the Milky Way, but have hitherto been unable to rule out conclusively the presence of alternative concentrations of mass. Here we report ten years of high-resolution astrometric imaging that allows us to trace two-thirds of the orbit of the star currently closest to the compact radio source (and massive black-hole candidate) Sagittarius A*. The observations, which include both pericentre and apocentre passages, show that the star is on a bound, highly elliptical keplerian orbit around Sgr A*, with an orbital period of 15.2 years and a pericentre distance of only 17 light hours. The orbit with the best fit to the observations requires a central point mass of (3.7 +/- 1.5) x 10(6) solar masses (M(*)). The data no longer allow for a central mass composed of a dense cluster of dark stellar objects or a ball of massive, degenerate fermions.
We report 75 milli-arcsec resolution, near-IR imaging spectroscopy within the central 30 light days of the Galactic Center, taken with the new adaptive optics assisted, integral field spectrometer SINFONI on the ESO-VLT. To a limiting magnitude of K~16, 9 of 10 1 based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory, Chile 1 stars in the central 0.4", and 13 of 17 stars out to 0.7" from the central black hole have spectral properties of B0-B9, main sequence stars. Based on the 2.1127µm HeI line width all brighter early type stars have normal rotation velocities, similar to solar neighborhood stars.We combine the new radial velocities with SHARP/NACO astrometry to derive improved 3 d stellar orbits for six of these 'S'-stars in the central 0.5". Their orientations in space appear random. Their orbital planes are not co-aligned with those of the two disks of massive young stars 1-10" from SgrA*. We can thus exclude the hypothesis that the S-stars as a group inhabit the inner regions of these disks. They also cannot have been located/formed in these disks and then migrated inwards within their planes. From the combination of their normal rotation and random orbital orientations we conclude that the S-stars were most likely brought into the central light month by strong individual scattering events.The updated estimate of distance to the Galactic center from the S2 orbit fit is R o = 7.62 ± 0.32 kpc, resulting in a central mass value of 3.61 ± 0.32 x 10 6 M ⊙ .We happened to catch two smaller flaring events from SgrA* during our spectral observations. The 1.7-2.45µm spectral energy distributions of these flares are fit by a featureless, 'red' power law of spectral index α'=-4±1 (S ν~ν α' ). The observed spectral slope is in good agreement with synchrotron models in which the infrared emission 2 comes from accelerated non-thermal, high energy electrons in a radiative inefficient accretion flow in the central R~10 R s region.
Recent measurements of stellar orbits provide compelling evidence that the compact radio source Sagittarius A* (refs 4, 5) at the Galactic Centre is a 3.6-million-solar-mass black hole. Sgr A* is remarkably faint in all wavebands other than the radio region, however, which challenges current theories of matter accretion and radiation surrounding black holes. The black hole's rotation rate is not known, and therefore neither is the structure of space-time around it. Here we report high-resolution infrared observations of Sgr A* that reveal 'quiescent' emission and several flares. The infrared emission originates from within a few milliarcseconds of the black hole, and traces very energetic electrons or moderately hot gas within the innermost accretion region. Two flares exhibit a 17-minute quasi-periodic variability. If the periodicity arises from relativistic modulation of orbiting gas, the emission must come from just outside the event horizon, and the black hole must be rotating at about half of the maximum possible rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.