SummaryThe genetic architecture of autism spectrum disorder involves the interplay of common and rare variation and their impact on hundreds of genes. Using exome sequencing, analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, and a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic, transcriptional, and chromatin remodeling pathways. These include voltage-gated ion channels regulating propagation of action potentials, pacemaking, and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodelers, prominently histone post-translational modifications involving lysine methylation/demethylation.
SUMMARY Analysis of de novo CNVs (dnCNVs) from the full Simons Simplex Collection (SSC) (N = 2,591 families) replicates prior findings of strong association with autism spectrum disorders (ASDs) and confirms six risk loci (1q21.1, 3q29, 7q11.23, 16p11.2, 15q11.2-13, and 22q11.2). The addition of published CNV data from the Autism Genome Project (AGP) and exome sequencing data from the SSC and the Autism Sequencing Consortium (ASC) shows that genes within small de novo deletions, but not within large dnCNVs, significantly overlap the high-effect risk genes identified by sequencing. Alternatively, large dnCNVs are found likely to contain multiple modest-effect risk genes. Overall, we find strong evidence that de novo mutations are associated with ASD apart from the risk for intellectual disability. Extending the transmission and de novo association test (TADA) to include small de novo deletions reveals 71 ASD risk loci, including 6 CNV regions (noted above) and 65 risk genes (FDR ≤ 0.1).
73Over 100 genetic loci harbor schizophrenia associated variants, yet how these common 74 variants confer risk is uncertain. The CommonMind Consortium has sequenced dorsolateral 75 prefrontal cortex RNA from schizophrenia cases (n=258) and control subjects (n=279), creating 76 the largest publicly available resource to date of gene expression and its genetic regulation; ~5 77 times larger than the latest release of GTEx. Using this resource, we find that ~20% of the 78 schizophrenia risk loci have common variants that could explain regulation of brain gene 79 expression. In five loci, these variants modulate expression of a single gene: FURIN, TSNARE1, 80 CNTN4, CLCN3 or SNAP91. Experimentally altered expression of three of them, FURIN, 81 TSNARE1, and CNTN4, perturbs the proliferation and apoptotic index of neural progenitors and 82 leads to neuroanatomical deficits in zebrafish. Furthermore, shRNA mediated knock-down of 83 FURIN in neural progenitor cells derived from human induced pluripotent stem cells produces 84 abnormal neural migration. Although 4.2% of genes (N = 693) display significant differential 85 expression between cases and controls, 44% show some evidence for differential expression. 86All fold changes are ≤ 1.33, and an independent cohort yields similar differential expression for 87 these 693 genes (r = 0.58). These findings are consistent with schizophrenia being highly 88 polygenic, as has been reported in investigations of common and rare genetic variation. Co-89 expression analyses identify a gene module that shows enrichment for genetic associations and 90 is thus relevant for schizophrenia. Taken together, these results pave the way for mechanistic 91 interpretations of genetic liability for schizophrenia and other brain diseases. 4The human brain is complicated and not well understood. Seemingly straightforward 93 fundamental information such as which genes are expressed therein and what functions they 94 perform are only partially characterized. To overcome these obstacles, we established the 95 CommonMind Consortium (CMC; www.synpase.org/CMC), a public-private partnership to 96 generate functional genomic data in brain samples obtained from autopsies of cases with and 97 without severe psychiatric disorders. The CMC is the largest existing collection of collaborating 98 brain banks and includes over 1,150 samples. A wide spectrum of data is being generated on 99 these samples including regional gene expression, epigenomics (cell-type specific histone 100 modifications and open chromatin), whole genome sequencing, and somatic mosaicism. 101 102 Schizophrenia (SCZ), affecting roughly 0.7% of adults, is a severe psychiatric disorder 103 characterized by abnormalities in thought and cognition (1). Despite a century of evidence 104 establishing its genetic basis, only recently have specific genetic risk factors been conclusively 105identified, including rare copy number variants (2) and >100 common variants (3). However, 106 there is not a one-to-one Mendelian mapping between these SCZ ris...
Mass spectrometry enables high-throughput screening of phosphoproteins across a broad range of biological contexts. When complemented by computational algorithms, phospho-proteomic data allows the inference of kinase activity, facilitating the identification of dysregulated kinases in various diseases including cancer, Alzheimer’s disease and Parkinson’s disease. To enhance the reliability of kinase activity inference, we present a network-based framework, RoKAI, that integrates various sources of functional information to capture coordinated changes in signaling. Through computational experiments, we show that phosphorylation of sites in the functional neighborhood of a kinase are significantly predictive of its activity. The incorporation of this knowledge in RoKAI consistently enhances the accuracy of kinase activity inference methods while making them more robust to missing annotations and quantifications. This enables the identification of understudied kinases and will likely lead to the development of novel kinase inhibitors for targeted therapy of many diseases. RoKAI is available as web-based tool at http://rokai.io.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.