The SuperWASP Cameras are wide-field imaging systems sited at the Observatorio del Roque de los Muchachos on the island of La Palma in the Canary Islands, and the Sutherland Station of the South African Astronomical Observatory. Each instrument has a field of view of some ~482 square degrees with an angular scale of 13.7 arcsec per pixel, and is capable of delivering photometry with accuracy better than 1% for objects having V ~ 7.0 - 11.5. Lower quality data for objects brighter than V ~15.0 are stored in the project archive. The systems, while designed to monitor fields with high cadence, are capable of surveying the entire visible sky every 40 minutes. Depending on the observational strategy, the data rate can be up to 100GB per night. We have produced a robust, largely automatic reduction pipeline and advanced archive which are used to serve the data products to the consortium members. The main science aim of these systems is to search for bright transiting exo-planets systems suitable for spectroscopic followup observations. The first 6 month season of SuperWASP-North observations produced lightcurves of ~6.7 million objects with 12.9 billion data points.Comment: 42 pages, 2 plates, 5 figures PASP in pres
We report the discovery of WASP‐3b, the third transiting exoplanet to be discovered by the WASP and SOPHIE collaboration. WASP‐3b transits its host star USNO‐B1.0 1256−0285133 every 1.846 834 ± 0.000 002 d. Our high‐precision radial velocity measurements present a variation with amplitude characteristic of a planetary‐mass companion and in phase with the light curve. Adaptive optics imaging shows no evidence for nearby stellar companions, and line‐bisector analysis excludes faint, unresolved binarity and stellar activity as the cause of the radial velocity variations. We make a preliminary spectroscopic analysis of the host star and find it to have Teff= 6400 ± 100 K and log g= 4.25 ± 0.05 which suggests it is most likely an unevolved main‐sequence star of spectral type F7‐8V. Our simultaneous modelling of the transit photometry and reflex motion of the host leads us to derive a mass of 1.76+0.08−0.14MJ and radius 1.31+0.07−0.14RJ for WASP‐3b. The proximity and relative temperature of the host star suggests that WASP‐3b is one of the hottest exoplanets known, and thus has the potential to place stringent constraints on exoplanet atmospheric models.
Swift X-ray observations of the ∼60 day supersoft phase of the recurrent nova RS Ophiuchi (RS Oph) 2006 show the progress of nuclear burning on the white dwarf (WD) in exquisite detail. First seen 26 days after the optical outburst, this phase started with extreme variability likely due to variable absorption, although intrinsic WD variations are not excluded. About 32 days later, a steady decline in count rate set in. NLTE model atmosphere spectral fits during the supersoft phase show that the effective temperature of the WD increases from ∼65 eV to ∼90 eV during the extreme variability phase, falling slowly after about day 60 and more rapidly after day 80. The bolometric luminosity is seen to be approximately constant and close to Eddington from day 45 up to day 60, the subsequent decline possibly signaling the end of extensive nuclear burning. Before the decline, a multiply-periodic ∼35 s modulation of the soft X-rays was present and may be the signature of a nuclear fusion driven instability. Our measurements are consistent with a WD mass near the Chandrasekhar limit; combined with a deduced accumulation of mass transferred from its binary companion, this leads us to suggest that RS Oph is a strong candidate for a future supernova explosion. The main uncertainty now is whether the WD is the CO type necessary for a Type Ia supernova. This may be confirmed by detailed abundance analyses of spectroscopic data from the outbursts.
Nova outbursts 1 take place in binary star systems comprising a white dwarf and either a low-mass Sun-like star or, as in the case of the recurrent nova RS Ophiuchi 2 , a red giant.Although the cause of these outbursts is known to be thermonuclear explosion of matter transferred from the companion onto the surface of the white dwarf 3 , models of the previous (1985) outburst of RS Ophiuchi failed to adequately fit the X-ray evolution 4 and there was controversy over a single-epoch high-resolution radio image, which suggested that the remnant was bipolar 5,6 rather than spherical as modelled. Here we report the detection of spatially resolved structure in RS Ophiuchi from two weeks after its 12 February 2006 outburst. We track an expanding shock wave as it sweeps through the red giant wind, producing a remnant similar to that of a type II supernova but evolving over months rather than millennia 7 . As in supernova remnants, the radio emission is non-thermal (synchrotron emission), but asymmetries and multiple emission components clearly demonstrate that contrary to the assumptions of spherical symmetry in models of the 1985 explosion, the ejection is jet-like, collimated by the central binary whose orientation on the sky can be determined from these observations. During the previous outburst of RS Ophiuchi (RS Oph) in 1985 a campaign was organized incorporating observations ranging from radio to X-ray wavelengths. The results included the detection of bright, evolving X-ray emission from hot gas suggested to arise from the expanding shock wave 8 . This time we have monitored RS Oph from much earlier in the outburst, both in X-rays [9][10][11][12][13] , and at radio wavelengths with the Multi-Element RadioLinked Interferometer Network (MERLIN), the Very Large Array (VLA), the Very Long Baseline Array (VLBA) and the European VLBI Network (EVN) [14][15][16] .
RS Ophiuchi began its latest outburst on 2006 February 12. Previous outbursts have indicated that high-velocity ejecta interact with a preexisting red giant wind, setting up shock systems analogous to those seen in supernova remnants. However, in the previous outburst in 1985, X-ray observations did not commence until 55 days after the initial explosion. Here we report on Swift observations covering the first month of the 2006 outburst with the Burst Alert Telescope (BAT) and X-Ray Telescope (XRT) instruments. RS Oph was clearly detected in the BAT 14Y25 keV band from t ¼ 0 to t $ 6 days. XRT observations from 0.3 to 10 keV started 3.17 days after outburst. The rapidly evolving XRT spectra clearly show the presence of both line and continuum emission, which can be fitted by thermal emission from hot gas whose characteristic temperature, overlying absorbing column (N H ) W , and resulting unabsorbed total flux decline monotonically after the first few days. Derived shock velocities are in good agreement with those found from observations at other wavelengths. Similarly, (N H ) W is in accord with that expected from the red giant wind ahead of the forward shock. We confirm the basic models of the 1985 outburst and conclude that standard phase I remnant evolution terminated by t $ 6 days and the remnant then rapidly evolved to display behavior characteristic of phase III. Around t ¼ 26 days, however, a new, luminous, and highly variable soft X-ray source began to appear, whose origin will be explored in a subsequent paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.