Abstract. Biomass burning represents an important source of atmospheric aerosols and greenhouse gases, yet little is known about its interannual variability or the underlying mechanisms regulating this variability at continental to global scales. Here we investigated fire emissions during the 8 year period from 1997 to 2004 using satellite data and the CASA biogeochemical model. Burned area from 2001-2004 was derived using newly available active fire and 500 m. burned area datasets from MODIS following the approach described by Giglio et al. (2006). ATSR and VIRS satellite data were used to extend the burned area time series back in time through 1997. In our analysis we estimated fuel loads, including organic soil layer and peatland fuels, and the net flux from terrestrial ecosystems as the balance between net primary production (NPP), heterotrophic respiration (R h ), and biomass burning, using time varying inputs of precipitation (PPT), temperature, solar radiation, and satellite-derived fractional absorbed photosynthetically active radiation (fA-PAR). For the 1997-2004 period, we found that on average approximately 58 Pg C year −1 was fixed by plants as NPP, and approximately 95% of this was returned back to the atmosphere via R h . Another 4%, or 2.5 Pg C year −1 was emitted by biomass burning; the remainder consisted of losses from fuel wood collection and subsequent burning. At a global scale, burned area and total fire emissions were largely decoupled from year to year. Total carbon emissions tracked burning in forested areas (including deforestation fires in the tropics), whereas burned area was largely controlled by savanna fires that responded to different environmental and human factors. Biomass burning emissions showed large interannual variability with a range of more than 1 Pg C year −1 , Correspondence to: G. R. van der Werf (guido.van.der.werf@falw.vu.nl) with a maximum in 1998 (3.2 Pg C year −1 ) and a minimum in 2000 (2.0 Pg C year −1 ).
During the 1997 to 1998 El Niño, drought conditions triggered widespread increases in fire activity, releasing CH 4 and CO 2 to the atmosphere. We evaluated the contribution of fires from different continents to variability in these greenhouse gases from 1997 to 2001, using satellite-based estimates of fire activity, biogeochemical modeling, and an inverse analysis of atmospheric CO anomalies. During the 1997 to 1998 El Niño, the fire emissions anomaly was 2.1 ± 0.8 petagrams of carbon, or 66 ± 24% of the CO 2 growth rate anomaly. The main contributors were Southeast Asia (60%), Central and South America (30%), and boreal regions of Eurasia and North America (10%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.