The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the Scrape-Off-Layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ ≥ 0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST DND geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.
JOREK is a massively parallel fully implicit non-linear extended magneto-hydrodynamic (MHD) code for realistic tokamak X-point plasmas. It has become a widely used versatile simulation code for studying large-scale plasma instabilities and their control and is continuously developed in an international community with strong involvements in the European fusion research programme and ITER organization. This article gives a comprehensive overview of the physics models implemented, numerical methods applied for solving the equations and physics studies performed with the code. A dedicated section highlights some of the verification work done for the code. A hierarchy of different physics models is available including a free boundary and resistive wall extension and hybrid kinetic-fluid models. The code allows for flux-surface aligned iso-parametric finite element grids in single and double X-point plasmas which can be extended to the true physical walls and uses a robust fully implicit time stepping. Particular focus is laid on plasma edge and scrape-off layer (SOL) physics as well as disruption related phenomena. Among the key results obtained with JOREK regarding plasma edge and SOL, are deep insights into the dynamics of edge localized modes (ELMs), ELM cycles, and ELM control by resonant magnetic perturbations, pellet injection, as well as by vertical magnetic kicks. Also ELM free regimes, detachment physics, the generation and transport of impurities during an ELM, and electrostatic turbulence in the pedestal region are investigated. Regarding disruptions, the focus is on the dynamics of the thermal quench (TQ) and current quench triggered by massive gas injection and shattered pellet injection, runaway electron (RE) dynamics as well as the RE interaction with MHD modes, and vertical displacement events. Also the seeding and suppression of tearing modes (TMs), the dynamics of naturally occurring TQs triggered by locked modes, and radiative collapses are being studied.
Detachment, an important mechanism for reducing target heat deposition, is achieved through reductions in power, particle and momentum; which are induced through plasma–atom and plasma–molecule interactions. Experimental research in how those reactions precisely contribute to detachment is limited. Both plasma–atom as well as plasma–molecule interactions can result in excited hydrogen atoms which emit atomic line emission. In this work, we investigate a new Balmer Spectroscopy technique for Plasma–Molecule Interaction—BaSPMI. This first disentangles the Balmer line emission from the various plasma–atom and plasma–molecule interactions and secondly quantifies their contributions to particle (ionisation and recombination) and power balance (radiative power losses). Its performance is verified using synthetic diagnostic techniques of both attached and detached TCV and MAST-U SOLPS-ITER simulations. We find that H 2 plasma chemistry involving H 2 + and/or H − can substantially elevate the Hα emission during detachment, which we show is an important precursor for Molecular Activated Recombination. An example illustration analysis of the full BaSPMI technique shows that the hydrogenic line series, even Lyα as well as the medium-n Balmer lines, can be significantly influenced by plasma–molecule interactions by tens ofpercent. That has important implications for using atomic hydrogen spectroscopy for diagnosing divertor plasmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.