The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have searched for the neutral Higgs bosons which are predicted by the Minimal Supersymmetric Standard Model (MSSM). The data of the four collaborations are statistically combined and examined for their consistency with the background hypothesis and with a possible Higgs boson signal. The combined LEP data show no significant excess of events which would indicate the production of Higgs bosons. The search results are used to set upper bounds on the cross-sections of various Higgs-like event topologies. The results are interpreted within the MSSM in a number of "benchmark" models, including CP-conserving and CP-violating scenarios. These interpretations lead in all cases to large exclusions in the MSSM parameter space. Absolute limits are set on the parameter tan β and, in some scenarios, on the masses of neutral Higgs bosons.
This Letter reports the first measurement of the oscillation amplitude and frequency of reactor antineutrinos at Daya Bay via neutron capture on hydrogen using 1958 days of data. With over 3.6 million signal candidates, an optimized candidate selection, improved treatment of backgrounds and efficiencies, refined energy calibration, and an energy response model for the capture-on-hydrogen sensitive region, the relative νe rates and energy spectra variation among the near and far detectors gives sin 2 2θ13 = 0.0759 +0.0050 −0.0049 and ∆m 2 32 = (2.72 +0.14 −0.15 )× 10 −3 eV 2 assuming the normal neutrino mass ordering, and ∆m 2 32 = (−2.83 +0.15 −0.14 )×10 −3 eV 2 for the inverted neutrino mass ordering. This estimate of sin 2 2θ13 is consistent with and essentially independent from the one obtained using the capture-on-gadolinium sample at Daya Bay. The combination of these two results yields sin 2 2θ13 = 0.0833 ± 0.0022, which represents an 8% relative improvement in precision regarding the Daya Bay full 3158-day capture-on-gadolinium result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.