Background: Deleterious mutations on BRCA1/2 genes are known to confer high risk of developing breast and ovarian cancers. The identification of these mutations not only helped in selecting high risk individuals that need appropriate prevention approaches but also led to the development of the PARP-inhibitors targeted therapy. This study aims to assess the prevalence of the most frequent BRCA1 mutation in Tunisia, c.211dupA, and provide evidence of its common origin as well as its clinicopathological characteristics. We also aimed to identify additional actionable variants using classical and next generation sequencing technologies (NGS) which would allow to implement cost-effective genetic testing in limited resource countries. Patients and Methods: Using sanger sequencing, 112 breast cancer families were screened for c.211dupA. A set of patients that do not carry this mutation were investigated using NGS. Haplotype analysis was performed to assess the founder effect and to estimate the age of this mutation. Correlations between genetic and clinical data were also performed. Results: The c.211dupA mutation was identified in 8 carriers and a novel private BRCA1 mutation, c.2418dupA, was identified in one carrier. Both mutations are likely specific to NorthEastern Tunisia. Haplotype analysis supported the founder effect of c.211dupA and showed its recent origin. Phenotype-genotype correlation showed that both BRCA1 mutations seem to be associated with a severe phenotype. Whole Exome Sequencing (WES) analysis of a BRCA negative family revealed a Variant of Unknown Significance, c.3647C > G on RAD50. Molecular modeling showed that this variant could be classified as deleterious as it is responsible for destabilizing the RAD50 protein structure. Variant prioritization and pathway analysis of the WES data showed additional interesting candidate genes including MITF and ANKS6.
Hereditary breast cancer accounts for 5–10% of all breast cancer cases. So far, known genetic risk factors account for only 50% of the breast cancer genetic component and almost a quarter of hereditary cases are carriers of pathogenic mutations in BRCA1/2 genes. Hence, the genetic basis for a significant fraction of familial cases remains unsolved. This missing heritability may be explained in part by Copy Number Variations (CNVs). We herein aimed to evaluate the contribution of CNVs to hereditary breast cancer in Tunisia. Whole exome sequencing was performed for 9 BRCA negative cases with a strong family history of breast cancer and 10 matched controls. CNVs were called using the ExomeDepth R-package and investigated by pathway analysis and web-based bioinformatic tools. Overall, 483 CNVs have been identified in breast cancer patients. Rare CNVs affecting cancer genes were detected, of special interest were those disrupting APC2, POU5F1, DOCK8, KANSL1, TMTC3 and the mismatch repair gene PMS2. In addition, common CNVs known to be associated with breast cancer risk have also been identified including CNVs on APOBECA/B, UGT2B17 and GSTT1 genes. Whereas those disrupting SULT1A1 and UGT2B15 seem to correlate with good clinical response to tamoxifen. Our study revealed new insights regarding CNVs and breast cancer risk in the Tunisian population. These findings suggest that rare and common CNVs may contribute to disease susceptibility. Those affecting mismatch repair genes are of interest and require additional attention since it may help to select candidates for immunotherapy leading to better outcomes.
Introduction. Although epirubicin has significantly improved outcome in breast cancer (BC) patients, it is responsible for myocardial dysfunction that affects patients’ quality of life. The use of 2D global longitudinal strain (GLS) has been reported to detect early myocardial dysfunction. The aim of this study was to evaluate how GLS changes can predict cardiotoxicity. Methods. We conducted a prospective study from March 2018 to March 2020 on 66 patients with no cardiovascular risk factors, who presented with BC and received epirubicin. We measured left ventricular ejection fraction (LVEF) and GLS before chemotherapy, at three months (T3), and at 12 months (T12) from the last epirubicin infusion. Chemotherapy-Related-Cardiac-Dysfunction (CTRCD) was defined as a decrease of 10% in LVEF to a value below 53% according to ASE and EACI 2014 expert consensus. Results. The mean age at diagnosis was 47 ± 9 years old. At baseline, median LVEF was 70% and median GLS was −21%. Shortly after chemotherapy completion, two patients presented with symptomatic heart failure while asymptomatic CTRCD was revealed in three other patients at T12. Three months after the last epirubicin infusion, median LVEF was 65%, median GLS was −19%, and median GLS variation was 5%. However, in patients who presented with subsequent CTRCD, median GLS at T3 was −16% and median GLS variation was 19% ( p = 0.002 and p < 0.001 , respectively, when compared to patients who did not develop cardiotoxicity). Persistent GLS decrease at T3 was an independent predictor of CTRCD at T12. Age and left-sided thoracic irradiation did not increase the risk of cardiotoxicity in our study while the cumulative dose of epirubicin significantly affected cardiologic findings ( p = 0.001 ). Conclusion. This was the first North African study that assesses the value of measuring GLS to early detect cardiotoxicity. Patients whose GLS remained decreased after 3 months from anthracyclines-base chemotherapy had an increased risk for developing subsequent CTRCD. Further studies with larger sample size are warranted to identify the best cardioprotective molecules to be initiated in these patients before LVEF declines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.