The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto's atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long-term activity raise fundamental questions about how small planets remain active many billions of years after formation. Pluto's large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its north pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected.
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. CitationHamilton, V.E., et al., "Evidence for widespread hydrated minerals on asteroid (101955) Bennu." Nature astronomy 3, 4 (2019): p.
Eros is a very elongated (34 kilometers by 11 kilometers by 11 kilometers) asteroid, most of the surface of which is saturated with craters smaller than 1 kilometer in diameter. The largest crater is 5.5 kilometers across, but there is a 10-kilometer saddle-like depression with attributes of a large degraded crater. Surface lineations, both grooves and ridges, are prominent on Eros; some probably exploit planes of weakness produced by collisions on Eros and/or its parent body. Ejecta blocks (30 to 100 meters across) are abundant but not uniformly distributed over the surface. Albedo variations are restricted to the inner walls of certain craters and may be related to downslope movement of regolith. On scales of 200 meters to 1 kilometer, Eros is more bland in terms of color variations than Gaspra or Ida. Spectra (800 to 2500 nanometers) are consistent with an ordinary chondrite composition for which the measured mean density of 2.67 +/- 0.1 grams per cubic centimeter implies internal porosities ranging from about 10 to 30 percent.
The Kuiper Belt is a distant region of the outer Solar System. On 1 January 2019, the New Horizons spacecraft flew close to (486958) 2014 MU69, a cold classical Kuiper Belt object approximately 30 kilometers in diameter. Such objects have never been substantially heated by the Sun and are therefore well preserved since their formation. We describe initial results from these encounter observations. MU69 is a bilobed contact binary with a flattened shape, discrete geological units, and noticeable albedo heterogeneity. However, there is little surface color or compositional heterogeneity. No evidence for satellites, rings or other dust structures, a gas coma, or solar wind interactions was detected. MU69鈥檚 origin appears consistent with pebble cloud collapse followed by a low-velocity merger of its two lobes.
Christensen, P. R.; Drouet d'Aubigny, C. Y.; Hamilton, V. E.; Reuter, D. C.; Rizk, B.; Simon, A. A.; Asphaug, E.; Bandfield, J. L.; Barnouin, O. S.; Barucci, M. A.; Bierhaus, E. B.; Binzel, R. P.; Bottke, W. F.; Bowles, N. E.; Campins, H.; Clark, B. C.; Clark, B. E.; Connolly, H. C.; Daly, M. G.; Leon, J. de; Delbo', M.; Deshapriya, J. D. P.; Elder, C. M.; Fornasier, S.; Hergenrother, C. W.; Howell, E. S.; Jawin, E. R.; Kaplan, H. H.; Kareta, T. R.; Le Corre, L.; Li, J.-Y.; Licandro, J.; Lim, L. F.; Michel, P.; Molaro, J.; Nolan, M. C.; Pajola, M.; Popescu, M.; Garcia, J. L. Rizos; Ryan, A.; Schwartz, S. R.; Shultz, N.; Siegler, M. A.; Smith, P. H.; Tatsumi, E.; Thomas, C. A.; Walsh, K. J.; Wolner, C. W. V.; Zou, X.-D. and Lauretta, D. S. (2019). Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis. Nature Astronomy, 3 pp. 341-351. For guidance on citations see FAQs.Length of main text: 2956 words Length of methods: 3605 words Length of legends: 565 words Number of references: 53 main text, 69 including methods and supplementary information (refs 67 to 69 are cited in the SI only) , we show that asteroid (101955) Bennu's surface is globally rough, dense with boulders and low in albedo. The number of boulders is surprising given Bennu's moderate thermal inertia, suggesting that simple models linking thermal inertia to particle size do not adequately capture the complexity relating these properties. At the same time, we find evidence for a wide range of particle sizes with distinct albedo characteristics. Our findings imply that ages of Bennu's surface particles span from the disruption of the asteroid's parent body (boulders) to recent in situ production (micron-scale particles).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2025 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.