Most tumours are derived from a single cell that is transformed into a cancer-initiating cell (cancer stem cell) that has the capacity to proliferate and form tumours in vivo. However, the origin of the cancer stem cell remains elusive. Interestingly, during development and tissue repair the fusion of genetic and cytoplasmic material between cells of different origins is an important physiological process. Such cell fusion and horizontal gene-transfer events have also been linked to several fundamental features of cancer and could be important in the development of the cancer stem cell.
In this work, highly infiltrative brain tumors with a stem-like phenotype were established by xenotransplantation of human brain tumors in immunodeficient nude rats. These tumors coopted the host vasculature and presented as an aggressive disease without signs of angiogenesis. The malignant cells expressed neural stem cell markers, showed a migratory behavior similar to normal human neural stem cells, and gave rise to tumors in vivo after regrafting. Serial passages in animals gradually transformed the tumors into an angiogenesis-dependent phenotype. This process was characterized by a reduction in stem cells markers. Gene expression profiling combined with high throughput immunoblotting analyses of the angiogenic and nonangiogenic tumors identified distinct signaling networks in the two phenotypes. Furthermore, proinvasive genes were up-regulated and angiogenesis signaling genes were down-regulated in the stem-like tumors. In contrast, proinvasive genes were down-regulated in the angiogenesis-dependent tumors derived from the stem-like tumors. The described angiogenesis-independent tumor growth and the uncoupling of invasion and angiogenesis, represented by the stemlike cancer cells and the cells derived from them, respectively, point at two completely independent mechanisms that drive tumor progression. This article underlines the need for developing therapies that specifically target the stem-like cell pools in tumors.glioma ͉ invasiveness ͉ vessel cooption
By serial transplantation of human glioblastoma biopsies into the brain of immunodeficient nude rats, two different tumor phenotypes were obtained. Initially, the transplanted xenografts displayed a highly invasive phenotype that showed no signs of angiogenesis. By serial transplantation in animals, the tumors changed to a less invasive, predominantly angiogenic phenotype. To identify novel proteins related to the invasive phenotype, the xenografts were analyzed using a global proteomics approach. One of the identified proteins was protein disulfide isomerase (PDI) A6 precursor. PDI is a chaperone protein that mediates integrin-dependent cell adhesion. It is both present in the cytosol and at the cell surface. We show that PDI is strongly expressed on invasive glioma cells, in both xenografts and at the invasive front of human glioblastomas. Using an in vitro migration assay, we also show that PDI is expressed on migrating glioma cells. To determine the functional significance of PDI in cell migration, we tested the effect of a PDI inhibitor, bacitracin, and a PDI monoclonal antibody on glioma cell migration and invasion in vitro. Both tumor spheroids derived from human glioblastoma xenografts in nude rat brain and cell line spheroids were used. The PDI antibody, as well as bacitracin, inhibited tumor cell migration and invasion. The anti-invasive effect of bacitracin was reversible after withdrawal of the inhibitor, indicating a specific, nontoxic effect. In conclusion, using a global proteomics approach, PDI was identified to play an important role in glioma cell invasion, and its action was effectively inhibited by bacitracin. (Cancer Res 2006; 66(20): 9895-902)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.