We report on the silencing of codeinone reductase (COR) in the opium poppy, Papaver somniferum, using a chimeric hairpin RNA construct designed to silence all members of the multigene COR family through RNA interference (RNAi). After gene silencing, the precursor alkaloid (S)-reticuline-seven enzymatic steps upstream of codeinone-accumulated in transgenic plants at the expense of morphine, codeine, oripavine and thebaine. Methylated derivatives of reticuline also accumulated. Analysis verified loss of Cor gene transcript, appearance of 22-mer degradation products and reduction of enzyme activity. The surprising accumulation of (S)-reticuline suggests a feedback mechanism preventing intermediates from general benzylisoquinoline synthesis entering the morphine-specific branch. However transcript levels for seven other enzymes in the pathway, both before and after (S)-reticuline, were unaffected. This is the first report of gene silencing in transgenic opium poppy and of metabolic engineering to cause the high-yield accumulation of the nonnarcotic alkaloid reticuline.
The opium poppy is a source of the pharmaceuticals codeine, morphine and their derived analgesics. Here we describe the initial characterization of the poppy mutant known as top1 (for 'thebaine oripavine poppy 1'), which accumulates the morphine and codeine precursors thebaine and oripavine and does not complete their biosynthesis into morphine and codeine. The original discovery of top1 stimulated a re-engineering of the opioid industry in the island state of Tasmania, which grows over 40% of the world's licit opiates, in order to produce thebaine and oripavine efficiently from morphine-free poppy crops to provide precursors for highly effective analgesics and for treatment of opioid addiction.
SummaryOnly plants of the Papaver genus (poppies) are able to synthesize morphinan alkaloids, and cultivation of P. somniferum , opium poppy, remains critical for the production and supply of morphine, codeine and various semi-synthetic analgesics. Opium poppy was transformed with constitutively expressed cDNA of codeinone reductase ( PsCor1.1 ), the penultimate step in morphine synthesis. Most transgenic lines showed significant increases in capsule alkaloid content in replicated glasshouse and field trials over 4 years. The morphinan alkaloid
Papaverine is one of the earliest opium alkaloids for which a biosynthetic hypothesis was developed on theoretical grounds. Norlaudanosoline (=tetrahydropapaveroline) was claimed as the immediate precursor alkaloid for a multitude of nitrogen containing plant metabolites. This tetrahydroxylated compound was proposed to be fully O-methylated. The resulting tetrahydropapaverine should then aromatize to papaverine. In view of new experimental data, this pathway has to be revised. Feeding of 8-day-old seedlings of Papaver followed by direct examination of the metabolic fate of stable isotope-labeled precursors in the total plant extract, without further purification of the metabolites, led to elucidation of the new papaverine pathway in vivo. The central and earliest benzylisoquinoline alkaloid is not the tetraoxygenated norlaudanosoline but the trihydroxylated norcoclaurine that is further converted into (S)-reticuline, the established precursor for poppy alkaloids. The papaverine pathway is opened by the methylation of (S)-reticuline to generate (S)-laudanine. A second methylation at the 3′ position of laudanine leads to laudanosine, both are known alkaloids from the opium poppy. Subsequent N-demethylation of laudanosine yields the known precursor of papaverine: tetrahydropapaverine. Inspection of the subsequent aromatization reaction revealed a new intermediate, 1,2-dihydropapaverine, which has been characterized. The final step to papaverine is the dehydrogenation of the 1,2-bond, yielding the target compound papaverine. We conclusively show herein that the previously claimed norreticuline does not play a role in the biosynthesis of papaverine.
SummaryWe demonstrate that both over-expression and suppression of the gene encoding the morphinan pathway enzyme salutaridinol 7-O -acetyltransferase (SalAT) in opium poppy affects the alkaloid products that accumulate. Over-expression of the gene in most of the transgenic events resulted in an increase in capsule morphine, codeine and thebaine on a dry-weight basis. The transgenic line with the highest alkaloid content had 41%, 37% and 42% greater total alkaloids than the control in three independent trials over 3 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.