We present a catalog of nearby exoplanets, available at http://exoplanets.org and ApJ 646, 505 (published version available at the link above). It contains the 172 known low mass companions with orbits established through radial velocity and transit measurements around stars within 200 pc. We include 5 previously unpublished exoplanets orbiting the stars HD 11964, HD 66428, HD 99109, HD 107148, and HD 164922. We update orbits for 90 additional exoplanets including many whose orbits have not been revised since their announcement, and include radial velocity time series from the Lick, Keck, and Anglo-Australian Observatory planet searches. Both these new and previously published velocities are more precise here due to improvements in our data reduction pipeline, which we applied to archival spectra. We present a brief summary of the global properties of the known exoplanets, including their distributions of orbital semimajor axis, minimum mass, and orbital eccentricity.Comment: 45-page preprint version. The published ApJ version is available at http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2006ApJ...646..505B . Find further information at http://exoplanets.or
Abstract. In this paper we present the first comprehensive results extracted from the spectroscopic campaigns carried out by the EXPORT (EXoPlanetary Observational Research Team) consortium. During 1998-1999, EXPORT carried out an intensive observational effort in the framework of the origin and evolution of protoplanetary systems in order to obtain clues on the evolutionary path from the early stages of the pre-main sequence to stars with planets already formed. The spectral types of 70 stars, and the projected rotational velocities, v sin i, of 45 stars, mainly Vega-type and pre-main sequence, have been determined from intermediate-and high-resolution spectroscopy, respectively. The first part of the work is of fundamental importance in order to accurately place the stars in the HR diagram and determine the evolutionary sequences; the second part provides information on the kinematics and dynamics of the stars and the evolution of their angular momentum. The advantage of using the same observational configuration and methodology for all the stars is the homogeneity of the set of parameters obtained. Results from previous work are revised, leading in some cases to completely new determinations of spectral types and projected rotational velocities; for some stars no previous studies were available.
Abstract. New radial velocities of α Cen A & B obtained in the framework the Anglo-Australian Planet Search programme as well as in the CORALIE programme are added to those by Endl et al. (2001) to improve the precision of the orbital parameters. The resulting masses are 1.105 ± 0.0070 M and 0.934 ± 0.0061 M for A and B respectively. The factors limiting how accurately these masses can be derived from a combined visual-spectroscopic solution are investigated. The total effect of the convective blueshift and the gravitational redshift is also investigated and estimated to differ by 215 ± 8 m s −1 between the components. This suggests that the difference in convective blueshift between the components is much smaller than predicted from current hydrodynamical model atmosphere calculations.
Precise Doppler measurements from the Anglo-Australian Telescope (AAT) UCLES spectrometer reveal periodic Keplerian velocity variations in the stars HD 160691 and HD 27442. HD 160691 has a period of 743 days, a semiamplitude of 54 m s~1, and a high eccentricity, e \ 0.62, typical of extrasolar planets orbiting beyond 0.2 AU. The minimum (M sin i) mass of the companion is 1.97 and the M J , semimajor axis is 1.65 AU. HD 27442 has a 415 day period, a semiamplitude of 32 m s~1, and an eccentricity of 0.058. The minimum mass is 1.43 and the semimajor axis is 1.18 AU. This is the Ðrst M J , extrasolar planet orbiting beyond 0.2 AU that is in a circular orbit similar to solar system planets. The photon-limited precision of AAT/UCLES measurements is 3 m s~1 as demonstrated by stable stars and Keplerian Ðts to planet-bearing stars. In addition, we present conÐrmation of four previously announced planets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.