In the lowermost layer of the atmosphere-the troposphere-ozone is an important source of the hydroxyl radical, an oxidant that breaks down most pollutants and some greenhouse gases. High concentrations of tropospheric ozone are toxic, however, and have a detrimental effect on human health and ecosystem productivity. Moreover, tropospheric ozone itself acts as an effective greenhouse gas. Much of the present tropospheric ozone burden is a consequence of anthropogenic emissions of ozone precursors resulting in widespread increases in ozone concentrations since the late 1800s. At present, east Asia has the fastest-growing ozone precursor emissions. Much of the springtime east Asian pollution is exported eastwards towards western North America. Despite evidence that the exported Asian pollution produces ozone, no previous study has found a significant increase in free tropospheric ozone concentrations above the western USA since measurements began in the late 1970s. Here we compile springtime ozone measurements from many different platforms across western North America. We show a strong increase in springtime ozone mixing ratios during 1995-2008 and we have some additional evidence that a similar rate of increase in ozone mixing ratio has occurred since 1984. We find that the rate of increase in ozone mixing ratio is greatest when measurements are more heavily influenced by direct transport from Asia. Our result agrees with previous modelling studies, which indicate that global ozone concentrations should be increasing during the early part of the twenty-first century as a result of increasing precursor emissions, especially at northern mid-latitudes, with western North America being particularly sensitive to rising Asian emissions. We suggest that the observed increase in springtime background ozone mixing ratio may hinder the USA's compliance with its ozone air quality standard.
In situ measurements of the relative humidity with respect to ice (RHi) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RHi values show a sharp increase to average values of over 130% in both cloud types. These enhanced RHi values are attributed to the presence of a new class of HNO3-containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.