History-dependent metastable states with different bulk properties are formed in the vortex state of the type-II superconductor 2H-NbSe2. Magnetic measurements demonstrate the difference between the shielding responses of a field- and a zero-field-cooled state, and provide a procedure for switching the system from one state to the other.
In the Nd0.75Ho0.25Al2 alloy system, the magnetic moments of Nd and Ho occupying the same crystallographic site randomly are antiferromagnetically coupled via long-range indirect exchange interaction mediated by the conduction electrons. A single crystal grown at this stoichiometry displays a magnetic compensation behavior (Tcomp∼24 K) in all orientations. In the close vicinity of Tcomp, the magnetization hysteresis loops measured for H || [100] assume an asymmetric shape, and the notion of an exchange bias field (Hexch) surfaces. Hexch changes sign across Tcomp as the left shift of the loops transforms to the right shift. This phase reversal appears to correlate with the corresponding reversal in the directions of the local magnetic moments of Nd3+ and Ho3+ ions together with that of the conduction electron polarization (CEP). Near Tcomp, where the opposing contributions to the net magnetization from local magnetic moments are nearly equal, the contribution from CEP assumes an accentuated significance. Interestingly, the width of the M-H loop shows a divergence, followed by a collapse on approaching Tcomp from high- as well as low-temperature ends. The observed behavior confirms a long-standing prediction based on a phenomenological model for ferrimagnetic systems. The field-induced changes in the magnetization data leave an imprint of a quasi-phase transition in the heat capacity data. Magneto-resistance (ΔR/R vs. T) has an oscillatory response, in which onset of magnetic ordering and phase reversal in magnetic orientations can be recognized.
A study of path dependent effects in single crystals of CeRu2 and 2H − N bSe2 show that critical current density Jc of the vortex state depends on its thermomagnetic history over a very large part of (H, T ) parameter space. The path dependence in Jc is absent above the peak position (i.e., H > Hp) of the peak effect region, which we believe identifies the complete loss of order in the vortex structure. The highly disordered FC state can be healed into a relatively ordered vortex lattice by subjecting it to a large enough change in dc field (few tens of Oe) or by shaking the FC state with sufficient ac field (few Oe).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.