Latest data on the hydrophysical and biological state of the residual basins of the Aral Sea are presented and compared. Direct, quasi-simultaneous observations were carried out in the central part of the Western Large Aral Sea, the northern extremity of the Large Aral known as Chernyshev Bay, Lake Tshchebas, and the Small Aral Sea in October 2014. The Large Aral Sea and Lake Tshchebas transformed into hyperhaline water bodies with highly special taxocene structure. The Small Aral Sea was a relatively diverse brackish ecosystem, which was rather similar to the pre-desiccation environment. The Small Aral Sea and Lake Tshchebas exhibited a fully-mixed vertical structure, whereas the Western Large Aral Sea was strongly stratified. Our data show that during desiccation, different parts of the Aral Sea experienced different environmental conditions, resulting in qualitative and quantitative differences in the physical and biological regimes among the different residual basins.
The shrinkage of the Aral Sea in the second half of the past century has significantly affected the hydrophysical regime of the lake. The objective of this paper is to report on a hydrological structure and circulation of the today's Aral Sea based on both direct field observations and modeling results. We focus on the results of three field surveys to the Aral Sea which took place in the period from 2009 to 2011. In addition, series of numerical experiments using Princeton Ocean Model adapted to the Aral Sea was undertaken to investigate the contributions from bathymetry and water stratification in the formation of the basin scale circulation. The hydrological structure of the Aral's western basin in autumn season exhibited a three-layered pattern with two local salinity maxima, separated by a fresher intermediate layer. According to direct observations, water circulation in the surface layer has anti-cyclonic character, while circulation in the bottom layer has cyclonic sign under the predominant northerly winds. The simulation experiments demonstrated clearly that the main cause of the anti-cyclonic circulation in the surface layer of the lake is the "asymmetric" bathymetry with broad shallow area along the eastern coast and relatively steep and deep western slope. However, strong stratification is a necessary condition for the formation of the cyclonic circulation gyre in the bottom layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.