Background
Accurate prediction of the disease severity of patients with COVID-19 would greatly improve care delivery and resource allocation and thereby reduce mortality risks, especially in less developed countries. Many patient-related factors, such as pre-existing comorbidities, affect disease severity and can be used to aid this prediction.
Objective
Because rapid automated profiling of peripheral blood samples is widely available, we aimed to investigate how data from the peripheral blood of patients with COVID-19 can be used to predict clinical outcomes.
Methods
We investigated clinical data sets of patients with COVID-19 with known outcomes by combining statistical comparison and correlation methods with machine learning algorithms; the latter included decision tree, random forest, variants of gradient boosting machine, support vector machine, k-nearest neighbor, and deep learning methods.
Results
Our work revealed that several clinical parameters that are measurable in blood samples are factors that can discriminate between healthy people and COVID-19–positive patients, and we showed the value of these parameters in predicting later severity of COVID-19 symptoms. We developed a number of analytical methods that showed accuracy and precision scores >90% for disease severity prediction.
Conclusions
We developed methodologies to analyze routine patient clinical data that enable more accurate prediction of COVID-19 patient outcomes. With this approach, data from standard hospital laboratory analyses of patient blood could be used to identify patients with COVID-19 who are at high risk of mortality, thus enabling optimization of hospital facilities for COVID-19 treatment.
Recently, electroencephalogram-based emotion recognition has become crucial in enabling the Human-Computer Interaction (HCI) system to become more intelligent. Due to the outstanding applications of emotion recognition, e.g., person-based decision making, mind-machine interfacing, cognitive interaction, affect detection, feeling detection, etc., emotion recognition has become successful in attracting the recent hype of AI-empowered research. Therefore, numerous studies have been conducted driven by a range of approaches, which demand a systematic review of methodologies used for this task with their feature sets and techniques. It will facilitate the beginners as guidance towards composing an effective emotion recognition system. In this article, we have conducted a rigorous review on the state-ofthe-art emotion recognition systems, published in recent literature, and summarized some of the common emotion recognition steps with relevant definitions, theories, and analyses to provide key knowledge to develop a proper framework. Moreover, studies included here were dichotomized based on two categories: i) deep learning-based, and ii) shallow machine learning-based emotion recognition systems. The reviewed systems were compared based on methods, classifier, the number of classified emotions, accuracy, and dataset used. An informative comparison, recent research trends, and some recommendations are also provided for future research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.