Nanorods of Sb 2 S 3 have been synthesized by a surfactant assisted hydrothermal method. The formation of nanorods through flowerlike morphology with an intermediate straw tide like structure has been depicted by scanning electron microscopy (SEM) study. This type of observation is the first of its kind for this material, and it has been explained on the basis of a two step heterogeneous nucleation-growth mechanism followed by crystal splitting. Raman spectroscopy of the nanorods has been carried out to provide an idea about their purity. An increase in the band gap is observed for Sb 2 S 3 with nanorod-type morphology. Photoluminescence (PL) shows no sign of quantum confinement effect, though a large increase in intensity for nanorods has been observed compared to the flowerlike morphology.
We have investigated the agglomeration behaviour of two types of multi-walled carbon nanotubes (MWNTs; N-MWNTs and D-MWNTs), which have different chemical functionalities, average diameter, varying extent of agglomeration and agglomerations. The properties were altered by varying the agglomerated structure. The strength of the MWNT agglomerates was estimated via nanoindentation. The work done to indent D-MWNT agglomerates (3910.3 × 10(-8) erg) was higher than for N-MWNTs agglomerates (2316.4 × 10(-8) erg). An organic modifier, the Li salt of 6-aminohexanoic acid (Li-AHA), was used to deagglomerate the MWNTs in an aqueous medium. The stability of the aqueous dispersion of Li-AHA-modified MWNTs was analyzed by UV-vis spectroscopy and zeta potential measurements. An increase in Li-AHA concentration increased the dispersion of MWNTs in the aqueous medium. Furthermore, the mechanism of dispersion of the two types of MWNTs in the aqueous medium in the presence of Li-AHA was determined based on the electrostatic charge repulsion between the negatively charged species. A fluorescence-activated cell sorting technique was used to assess the debundling of MWNT agglomerates in the aqueous medium. We examined the morphology-property relationship in Li-AHA-modified MWNTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.