Abstract. We present the results of a long-term study of the black hole candidate GX 339−4 using simultaneous radio (from the Australia Telescope Compact Array) and X-ray (from the Rossi X-ray Timing Explorer and BeppoSAX) observations performed between 1997 and 2000. We find strong evidence for a correlation between these two emission regimes that extends over more than three decades in X-ray flux, down to the quiescence level of GX 339−4. This is the strongest evidence to date for such strong coupling between radio and X-ray emission. We discuss these results in light of a jet model that can explain the radio/X-ray correlation. This could indicate that a significant fraction of the X-ray flux that is observed in the low-hard state of black hole candidates may be due to optically thin synchrotron emission from the compact jet.
In recent years, much effort has been devoted to unravelling the connection between the accretion flow and the jets in accreting compact objects. In the present work, we report new constraints on these issues, through the long‐term study of the radio and X‐ray behaviour of the black hole candidate H1743−322. This source is known to be one of the ‘outliers’ of the universal radio/X‐ray correlation, i.e. a group of accreting stellar‐mass black holes displaying fainter radio emission for a given X‐ray luminosity than expected from the correlation. Our study shows that the radio and X‐ray emission of H1743−322 are strongly correlated at high luminosity in the hard spectral state. However, this correlation is unusually steep for a black hole X‐ray binary: b∼ 1.4 (with Lradio∝LbX). Below a critical luminosity, the correlation becomes shallower until it rejoins the standard correlation with b∼ 0.6. Based on these results, we first show that the steep correlation can be explained if the inner accretion flow is radiatively efficient during the hard state, in contrast to what is usually assumed for black hole X‐ray binaries in this spectral state. The transition between the steep and the standard correlation would therefore reflect a change from a radiatively efficient to a radiatively inefficient accretion flow. Finally, we investigate the possibility that the discrepancy between ‘outliers’ and ‘standard’ black holes arises from the outflow properties rather than from the accretion flow.
We present the first VLBI maps of H 2 O maser emission (1.3 cm) in the nucleus of the Circinus galaxy, constructed from data obtained with the Australia Telescope Long Baseline Array. The maser emission traces a warped, edge-on accretion disk between radii of 0:11 AE 0:02 and $0.40 pc, as well as a wide-angle outflow that extends up to $1 pc from the estimated disk center. The disk rotation is close to Keplerian (v / r À0:5 ), the maximum detected rotation speed is 260 km s À1 , and the inferred central mass is ð1:7 AE 0:3Þ Â 10 6 M . The outflowing masers are irregularly distributed above and below the disk, with relative outflow velocities up to $AE160 km s À1 , projected along the line of sight. The flow probably originates closer than 0.1 pc to the central engine, possibly in an inward extension of the accretion disk, although there is only weak evidence of rotation in the outward-moving material. We observe that the warp of the disk appears to collimate the outflow and to fix the extent of the ionization cone observed on larger angular scales. This study provides the first direct evidence (i.e., through imaging) of dusty, high-density, molecular material in a nuclear outflow less than 1 pc from the central engine of a Seyfert galaxy, as well as the first graphic evidence that warped accretion disks can channel outflows and illumination patterns in active galactic nuclei. We speculate that the same arrangement, which in some ways obviates the need for a geometrically thick, dusty torus, may apply to other type 2 active galactic nuclei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.